These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19435287)
1. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Campbell ZT; Weichsel A; Montfort WR; Baldwin TO Biochemistry; 2009 Jul; 48(26):6085-94. PubMed ID: 19435287 [TBL] [Abstract][Full Text] [Related]
2. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase. Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305 [TBL] [Abstract][Full Text] [Related]
3. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data. Lin LY; Sulea T; Szittner R; Vassilyev V; Purisima EO; Meighen EA Protein Sci; 2001 Aug; 10(8):1563-71. PubMed ID: 11468353 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi. Borshchevskiy V; Round E; Bertsova Y; Polovinkin V; Gushchin I; Ishchenko A; Kovalev K; Mishin A; Kachalova G; Popov A; Bogachev A; Gordeliy V PLoS One; 2015; 10(3):e0118548. PubMed ID: 25734798 [TBL] [Abstract][Full Text] [Related]
5. Structure of bacterial luciferase beta 2 homodimer: implications for flavin binding. Tanner JJ; Miller MD; Wilson KS; Tu SC; Krause KL Biochemistry; 1997 Jan; 36(4):665-72. PubMed ID: 9020763 [TBL] [Abstract][Full Text] [Related]
6. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter. Tinikul R; Thotsaporn K; Thaveekarn W; Jitrapakdee S; Chaiyen P J Biotechnol; 2012 Dec; 162(2-3):346-53. PubMed ID: 23000378 [TBL] [Abstract][Full Text] [Related]
7. Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. Low JC; Tu SC Biochemistry; 2002 Feb; 41(6):1724-31. PubMed ID: 11827516 [TBL] [Abstract][Full Text] [Related]
8. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit. Sparks JM; Baldwin TO Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428 [TBL] [Abstract][Full Text] [Related]
9. Flavin reductase P: structure of a dimeric enzyme that reduces flavin. Tanner JJ; Lei B; Tu SC; Krause KL Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Campbell ZT; Baldwin TO; Miyashita O Biophys J; 2010 Dec; 99(12):4012-9. PubMed ID: 21156144 [TBL] [Abstract][Full Text] [Related]
12. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Chang FC; Swenson RP Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827 [TBL] [Abstract][Full Text] [Related]
13. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Li CH; Tu SC Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065 [TBL] [Abstract][Full Text] [Related]
14. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Lin LY; Szittner R; Friedman R; Meighen EA Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068 [TBL] [Abstract][Full Text] [Related]
15. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. Jawanda N; Ahmed K; Tu SC Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321 [TBL] [Abstract][Full Text] [Related]
16. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase. Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958 [TBL] [Abstract][Full Text] [Related]
17. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap. Thoden JB; Holden HM; Fisher AJ; Sinclair JF; Wesenberg G; Baldwin TO; Rayment I Protein Sci; 1997 Jan; 6(1):13-23. PubMed ID: 9007973 [TBL] [Abstract][Full Text] [Related]
18. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
19. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Hosseinkhani S; Szittner R; Meighen EA Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872 [TBL] [Abstract][Full Text] [Related]
20. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model. Lei B; Ding Q; Tu SC Biochemistry; 2004 Dec; 43(50):15975-82. PubMed ID: 15595854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]