These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19435293)

  • 21. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.
    Wong D; Vasanthan T; Ozimek L
    Food Chem; 2013 Dec; 141(4):3913-9. PubMed ID: 23993565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
    Guyomarc'h F; Jemin M; Le Tilly V; Madec MN; Famelart MH
    J Agric Food Chem; 2009 Jul; 57(13):5910-7. PubMed ID: 19534462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between gelation conditions and the physical properties of whey protein particles.
    Sağlam D; Venema P; de Vries R; van Aelst A; van der Linden E
    Langmuir; 2012 Apr; 28(16):6551-60. PubMed ID: 22471930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: comparison with the plastein reaction and characterization of interactions.
    Doucet D; Gauthier SF; Otter DE; Foegeding EA
    J Agric Food Chem; 2003 Sep; 51(20):6036-42. PubMed ID: 13129313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins.
    Lei Z; Chen XD; Mercadé-Prieto R
    PLoS One; 2016; 11(10):e0164496. PubMed ID: 27732644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic hydrolysis as a means of expanding the cold gelation conditions of soy proteins.
    Kuipers BJ; van Koningsveld GA; Alting AC; Driehuis F; Gruppen H; Voragen AG
    J Agric Food Chem; 2005 Feb; 53(4):1031-8. PubMed ID: 15713016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the scaling law on cellulose solution prepared at low temperature.
    Lue A; Zhang L
    J Phys Chem B; 2008 Apr; 112(15):4488-95. PubMed ID: 18366208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and beta-lactoglobulin at neutral pH.
    Mahmoudi N; Mehalebi S; Nicolai T; Durand D; Riaublanc A
    J Agric Food Chem; 2007 Apr; 55(8):3104-11. PubMed ID: 17378578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative roles of salt in gelation properties of fish protein isolate.
    Kim YS; Park JW
    J Food Sci; 2008 Oct; 73(8):C585-8. PubMed ID: 19019100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intragastric gelation of whey protein-pectin alters the digestibility of whey protein during in vitro pepsin digestion.
    Zhang S; Vardhanabhuti B
    Food Funct; 2014 Jan; 5(1):102-10. PubMed ID: 24284478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological study of the sol-gel transition in silica alkoxides.
    Ponton A; Warlus S; Griesmar P
    J Colloid Interface Sci; 2002 May; 249(1):209-16. PubMed ID: 16290588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheological behavior of WPI dispersion as a function of pH and protein concentration.
    Bazinet L; Trigui M; Ippersiel D
    J Agric Food Chem; 2004 Aug; 52(17):5366-71. PubMed ID: 15315371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of conductivity control on the separation of whey proteins by bipolar membrane electroacidification.
    Bazinet L; Ippersiel D; Mahdavi B
    J Agric Food Chem; 2004 Apr; 52(7):1980-4. PubMed ID: 15053539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of silk fibroin sol-gel transitions.
    Matsumoto A; Chen J; Collette AL; Kim UJ; Altman GH; Cebe P; Kaplan DL
    J Phys Chem B; 2006 Nov; 110(43):21630-8. PubMed ID: 17064118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks.
    Paulusse JM; van Beek DJ; Sijbesma RP
    J Am Chem Soc; 2007 Feb; 129(8):2392-7. PubMed ID: 17269773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat-induced whey protein gels: protein-protein interactions and functional properties.
    Havea P; Watkinson P; Kuhn-Sherlock B
    J Agric Food Chem; 2009 Feb; 57(4):1506-12. PubMed ID: 19199595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition.
    Celli JP; Turner BS; Afdhal NH; Ewoldt RH; McKinley GH; Bansil R; Erramilli S
    Biomacromolecules; 2007 May; 8(5):1580-6. PubMed ID: 17402780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scleroglucan gelation by in situ neutralization of the alkaline solution.
    Aasprong E; Smidsrød O; Stokke BT
    Biomacromolecules; 2003; 4(4):914-21. PubMed ID: 12857073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical and chemical interactions in cold gelation of food proteins.
    Alting AC; de Jongh HH; Visschers RW; Simons JW
    J Agric Food Chem; 2002 Jul; 50(16):4682-9. PubMed ID: 12137497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of sugars on the cross-linking formation and phase separation of high-pressure induced gel of whey protein from bovine milk.
    He JS; Azuma N; Hagiwara T; Kanno C
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):615-25. PubMed ID: 16556976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.