These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 19435298)
1. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. Jain R; Bally T; Rablen PR J Org Chem; 2009 Jun; 74(11):4017-23. PubMed ID: 19435298 [TBL] [Abstract][Full Text] [Related]
2. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
3. 1H chemical shifts in NMR. Part 20--anisotropic and steric effects in halogen substituent chemical shifts (SCS), a modelling and ab initio investigation. Abraham RJ; Mobli M; Smith RJ Magn Reson Chem; 2004 May; 42(5):436-44. PubMed ID: 15095379 [TBL] [Abstract][Full Text] [Related]
4. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. Justino LL; Ramos ML; Abreu PE; Carvalho RA; Sobral AJ; Scherf U; Burrows HD J Phys Chem B; 2009 Sep; 113(35):11808-21. PubMed ID: 19663434 [TBL] [Abstract][Full Text] [Related]
5. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols. Abraham RJ; Mobli M Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232 [TBL] [Abstract][Full Text] [Related]
6. Modeling the (13)C chemical-shift tensor in organic single crystals by quantum mechanical methods: finite basis set effects. Sefzik TH; Fidler JM; Iuliucci RJ; Facelli JC Magn Reson Chem; 2006 Mar; 44(3):390-400. PubMed ID: 16477672 [TBL] [Abstract][Full Text] [Related]
7. Quantum vs. classical models of the nitro group for proton chemical shift calculations and conformational analysis. Mobli M; Abraham RJ J Comput Chem; 2005 Mar; 26(4):389-98. PubMed ID: 15651034 [TBL] [Abstract][Full Text] [Related]
8. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation. Abraham RJ; Bardsley B; Mobli M; Smith RJ Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026 [TBL] [Abstract][Full Text] [Related]
9. Comparison of various density functional methods for distinguishing stereoisomers based on computed (1)H or (13)C NMR chemical shifts using diastereomeric penam beta-lactams as a test set. Wiitala KW; Cramer CJ; Hoye TR Magn Reson Chem; 2007 Oct; 45(10):819-29. PubMed ID: 17729215 [TBL] [Abstract][Full Text] [Related]
11. NMR spectra, GIAO and charge density calculations of five-membered aromatic heterocycles. Katritzky AR; Akhmedov NG; Doskocz J; Mohapatra PP; Hall CD; Güven A Magn Reson Chem; 2007 Jul; 45(7):532-43. PubMed ID: 17534885 [TBL] [Abstract][Full Text] [Related]
12. Hartree-Fock, Møller-Plesset calculations and dynamic NMR study of 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one. Hassanzadeh A; Loghmani-Khouzani H; Sadeghi MM; Ghorbani MH Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1236-43. PubMed ID: 17336140 [TBL] [Abstract][Full Text] [Related]
13. 1H chemical shifts in NMR: Part 22-Prediction of the 1H chemical shifts of alcohols, diols and inositols in solution, a conformational and solvation investigation. Abraham RJ; Byrne JJ; Griffiths L; Koniotou R Magn Reson Chem; 2005 Aug; 43(8):611-24. PubMed ID: 15986495 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and experimental NMR study of protopine hydrochloride isomers. Tousek J; Malináková K; Dostál J; Marek R Magn Reson Chem; 2005 Jul; 43(7):578-81. PubMed ID: 15883981 [TBL] [Abstract][Full Text] [Related]
15. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections. Khvostichenko D; Choi A; Boulatov R J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545 [TBL] [Abstract][Full Text] [Related]
16. Calculation of NMR chemical shifts in organic solids: accounting for motional effects. Dumez JN; Pickard CJ J Chem Phys; 2009 Mar; 130(10):104701. PubMed ID: 19292543 [TBL] [Abstract][Full Text] [Related]
17. The prediction of (1)H chemical shifts in amines: a semiempirical and ab initio investigation. Basso EA; Gauze GF; Abraham RJ Magn Reson Chem; 2007 Sep; 45(9):749-57. PubMed ID: 17640030 [TBL] [Abstract][Full Text] [Related]
18. Quantum mechanical calculations of conformationally relevant 1H and 13C NMR chemical shifts of N-, O-, and S-substituted calixarene systems. Bifulco G; Riccio R; Gaeta C; Neri P Chemistry; 2007; 13(25):7185-94. PubMed ID: 17566131 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and GIAO NMR calculations for some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental 1H and 13C chemical shifts. Yüksek H; Gürsoy O; Cakmak I; Alkan M Magn Reson Chem; 2005 Jul; 43(7):585-7. PubMed ID: 15880480 [TBL] [Abstract][Full Text] [Related]
20. Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules. Bally T; Rablen PR J Org Chem; 2011 Jun; 76(12):4818-30. PubMed ID: 21574622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]