These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19435363)

  • 41. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids.
    Yan N; Yuan Y; Dykeman R; Kou Y; Dyson PJ
    Angew Chem Int Ed Engl; 2010 Jul; 49(32):5549-53. PubMed ID: 20593435
    [No Abstract]   [Full Text] [Related]  

  • 42. Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions.
    Ueno K; Imaizumi S; Hata K; Watanabe M
    Langmuir; 2009 Jan; 25(2):825-31. PubMed ID: 19072578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of bioactive cellulose films reconstituted from ionic liquids.
    Turner MB; Spear SK; Holbrey JD; Rogers RD
    Biomacromolecules; 2004; 5(4):1379-84. PubMed ID: 15244454
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures.
    Bayram E; Zahmakiran M; Ozkar S; Finke RG
    Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homogeneous modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide as a catalyst.
    Liu CF; Zhang AP; Li WY; Yue FX; Sun RC
    J Agric Food Chem; 2009 Mar; 57(5):1814-20. PubMed ID: 19199606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organic carbonates as stabilizing solvents for transition-metal nanoparticles.
    Vollmer C; Thomann R; Janiak C
    Dalton Trans; 2012 Aug; 41(32):9722-7. PubMed ID: 22786622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the structural and surface properties of transition-metal nanoparticles in ionic liquids.
    Dupont J; Scholten JD
    Chem Soc Rev; 2010 May; 39(5):1780-804. PubMed ID: 20419219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles.
    Laudenslager MJ; Schiffman JD; Schauer CL
    Biomacromolecules; 2008 Oct; 9(10):2682-5. PubMed ID: 18816099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A colloid "digesting" route to novel, thermally stable high surface area ZrO2 and Pd/ZrO2 catalytic materials.
    D'Souza L; Saleh-Subaie J; Richards R
    J Colloid Interface Sci; 2005 Dec; 292(2):476-85. PubMed ID: 15990106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids.
    Wang Y; Yang H
    Chem Commun (Camb); 2006 Jun; (24):2545-7. PubMed ID: 16779472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodium-catalyzed hydroformylation of 1-hexene in an ionic liquid: a molecular dynamics study of the hexene/[BMI][PF6] interface.
    Sieffert N; Wipff G
    J Phys Chem B; 2007 May; 111(18):4951-62. PubMed ID: 17388454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrolysis of cellulose by using catalytic amounts of FeCl₂ in ionic liquids.
    Tao F; Song H; Chou L
    ChemSusChem; 2010 Nov; 3(11):1298-303. PubMed ID: 20936646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles.
    Gracia MJ; Campelo JM; Losada E; Luque R; Marinas JM; Romero AA
    Org Biomol Chem; 2009 Dec; 7(23):4821-4. PubMed ID: 19907769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser-induced fragmentation of transition metal nanoparticles in ionic liquids.
    Gelesky MA; Umpierre AP; Machado G; Correia RR; Magno WC; Morais J; Ebeling G; Dupont J
    J Am Chem Soc; 2005 Apr; 127(13):4588-9. PubMed ID: 15796520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.
    Sun X; Lu C; Zhang W; Tian D; Zhang X
    Carbohydr Polym; 2013 Oct; 98(1):405-11. PubMed ID: 23987361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosensor for luteolin based on silver or gold nanoparticles in ionic liquid and laccase immobilized in chitosan modified with cyanuric chloride.
    Franzoi AC; Vieira IC; Dupont J; Scheeren CW; de Oliveira LF
    Analyst; 2009 Nov; 134(11):2320-8. PubMed ID: 19838422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward ionic-liquid-based model catalysis: growth, orientation, conformation, and interaction mechanism of the [Tf2N]- anion in [BMIM][Tf2N] thin films on a well-ordered alumina surface.
    Sobota M; Nikiforidis I; Hieringer W; Paape N; Happel M; Steinrück HP; Görling A; Wasserscheid P; Laurin M; Libuda J
    Langmuir; 2010 May; 26(10):7199-207. PubMed ID: 20143797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.