These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19435375)

  • 41. From amorphous to crystalline silicon nanoclusters: structural effects on exciton properties.
    Borrero-González LJ; Nunes LA; Guimarães FE; Wojcik J; Mascher P; Gennaro AM; Tirado M; Comedi D
    J Phys Condens Matter; 2011 Dec; 23(50):505302. PubMed ID: 22129528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled fabrication of Si nanocrystals embedded in thin SiON layers by PPECVD followed by oxidizing annealing.
    Perret-Tran-Van S; Makasheva K; Despax B; Bonafos C; Coulon PE; Paillard V
    Nanotechnology; 2010 Jul; 21(28):285605. PubMed ID: 20585166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si.
    Chou YC; Wu WW; Cheng SL; Yoo BY; Myung N; Chen LJ; Tu KN
    Nano Lett; 2008 Aug; 8(8):2194-9. PubMed ID: 18616326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of thermal annealing on the distribution of boron and phosphorus in p-i-n structured silicon nanocrystals embedded in silicon dioxide.
    Nomoto K; Cui XY; Breen A; Ceguerra AV; Perez-Wurfl I; Conibeer G; Ringer SP
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34763327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.
    Qi C; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Small; 2014 Jul; 10(14):2946-53. PubMed ID: 24623562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds.
    Nakamura Y; Miwa T; Ichikawa M
    Nanotechnology; 2011 Jul; 22(26):265301. PubMed ID: 21576805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature-Dependent HfO
    Zhang XY; Hsu CH; Lien SY; Wu WY; Ou SL; Chen SY; Huang W; Zhu WZ; Xiong FB; Zhang S
    Nanoscale Res Lett; 2019 Mar; 14(1):83. PubMed ID: 30847661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.
    Yoon J; Hong WK; Jo M; Jo G; Choe M; Park W; Sohn JI; Nedic S; Hwang H; Welland ME; Lee T
    ACS Nano; 2011 Jan; 5(1):558-64. PubMed ID: 21155534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays.
    Kale VS; Prabhakar RR; Pramana SS; Rao M; Sow CH; Jinesh KB; Mhaisalkar SG
    Phys Chem Chem Phys; 2012 Apr; 14(13):4614-9. PubMed ID: 22354387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Top-gated silicon nanowire transistors in a single fabrication step.
    Colli A; Tahraoui A; Fasoli A; Kivioja JM; Milne WI; Ferrari AC
    ACS Nano; 2009 Jun; 3(6):1587-93. PubMed ID: 19425540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer.
    Rigout ML; Niu H; Qin C; Zhang L; Li C; Bai X; Fan N
    Nanotechnology; 2008 Jun; 19(24):245303. PubMed ID: 21825808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silicon Nanotubes Fabricated by Wet Chemical Etching of ZnO/Si Core-Shell Nanowires.
    Sun YL; Zheng XD; Jevasuwan W; Fukata N
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33348576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and characterization of silicon quantum dots in Si-rich silicon carbide films.
    Chang GR; Ma F; Ma D; Xu K
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10824-8. PubMed ID: 22409005
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of a Native Oxide Layer at the a-Si:H/c-Si Interface and Its Influence on a Silicon Heterojunction Solar Cell.
    Liu W; Meng F; Zhang X; Liu Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26522-9. PubMed ID: 26565116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices.
    Han HS; Kim JS; Kim DH; Han GS; Jung HS; Noh JH; Hong KS
    Nanoscale; 2013 Apr; 5(8):3520-6. PubMed ID: 23493975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.