BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19435615)

  • 1. Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes.
    Franco-Marquès E; Méndez JA; Gironès J; Ginebra MP; Pèlach MA
    Acta Biomater; 2009 Oct; 5(8):2953-62. PubMed ID: 19435615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylic bone cements modified with beta-TCP particles encapsulated with poly(ethylene glycol).
    Vázquez B; Ginebra MP; Gil X; Planell JA; San Román J
    Biomaterials; 2005 Jul; 26(20):4309-16. PubMed ID: 15683655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-curing acrylic formulations containing PMMA/PCL composites: properties and antibiotic release behavior.
    Méndez JA; Abraham GA; del Mar Fernández M; Vázquez B; San Román J
    J Biomed Mater Res; 2002 Jul; 61(1):66-74. PubMed ID: 12001248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore size distributions of biodegradable polymer microparticles in aqueous environments measured by NMR cryoporometry.
    Petrov O; Furó I; Schuleit M; Domanig R; Plunkett M; Daicic J
    Int J Pharm; 2006 Feb; 309(1-2):157-62. PubMed ID: 16386391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres.
    Pfeifer BA; Burdick JA; Langer R
    Biomaterials; 2005 Jan; 26(2):117-24. PubMed ID: 15207458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on in vitro degradation behavior of a poly(glycolide-co-L-lactide) monofilament.
    Deng M; Chen G; Burkley D; Zhou J; Jamiolkowski D; Xu Y; Vetrecin R
    Acta Biomater; 2008 Sep; 4(5):1382-91. PubMed ID: 18442954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions.
    Lam CX; Savalani MM; Teoh SH; Hutmacher DW
    Biomed Mater; 2008 Sep; 3(3):034108. PubMed ID: 18689929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dexamethasone loaded bioresorbable films used in medical support devices: structure, degradation, crystallinity and drug release.
    Zilberman M
    Acta Biomater; 2005 Nov; 1(6):615-24. PubMed ID: 16701842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems.
    Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D
    Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly effective and slow-biodegradable network-type cationic gene delivery polymer: small library-like approach synthesis and characterization.
    Kim HJ; Kwon MS; Choi JS; Yang SM; Yoon JK; Kim K; Park JS
    Biomaterials; 2006 Apr; 27(10):2292-301. PubMed ID: 16313954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R; Hamada K; Ichikawa T; Asaoka K
    Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of radio-opaque filler on biodegradable stent properties.
    Chan WA; Bini TB; Venkatraman SS; Boey FY
    J Biomed Mater Res A; 2006 Oct; 79(1):47-52. PubMed ID: 16758453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites.
    Correlo VM; Pinho ED; Pashkuleva I; Bhattacharya M; Neves NM; Reis RL
    Macromol Biosci; 2007 Mar; 7(3):354-63. PubMed ID: 17370274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.
    Horiuchi S; Asaoka K; Tanaka E
    Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties.
    Elsner JJ; Zilberman M
    Acta Biomater; 2009 Oct; 5(8):2872-83. PubMed ID: 19416766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.