BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19435615)

  • 21. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation into the sorption of nitroglycerin and diazepam into PVC tubes and alternative tube materials during application.
    Treleano A; Wolz G; Brandsch R; Welle F
    Int J Pharm; 2009 Mar; 369(1-2):30-7. PubMed ID: 19027840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of moisture content on the mechanical properties of methyl methacrylate-starch copolymers.
    Bravo-Osuna I; Ferrero C; Jiménez-Castellanos MR
    Eur J Pharm Biopharm; 2007 Apr; 66(1):63-72. PubMed ID: 17005383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line.
    Mabilleau G; Moreau MF; Filmon R; Baslé MF; Chappard D
    Biomaterials; 2004 Sep; 25(21):5155-62. PubMed ID: 15109839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of novel biointerfaces (I). Blood compatibility of poly(2-methoxyethyl acrylate).
    Tanaka M
    Biomed Mater Eng; 2004; 14(4):427-38. PubMed ID: 15472391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffusion of soluble factors through degradable polymer nerve guides: Controlling manufacturing parameters.
    Kokai LE; Lin YC; Oyster NM; Marra KG
    Acta Biomater; 2009 Sep; 5(7):2540-50. PubMed ID: 19369123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of oligo(ethylene glycol) dimethacrylates effects on the properties of new biodegradable bone cement compositions.
    Lukaszczyk J; Rmiga M; Jaszcz K; Adler HJ; Jähne E; Kaczmarek M
    Macromol Biosci; 2005 Jan; 5(1):64-9. PubMed ID: 15635717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of drug polarity upon the solid-state structure and release properties of self-emulsifying drug delivery systems in relation with water affinity.
    Chambin O; Karbowiak T; Djebili L; Jannin V; Champion D; Pourcelot Y; Cayot P
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):73-8. PubMed ID: 19203864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailored delivery of active keratinocyte growth factor from biodegradable polymer formulations.
    Cho EJ; Tao Z; Tang Y; Tehan EC; Bright FV; Hicks WL; Gardella JA; Hard R
    J Biomed Mater Res A; 2003 Aug; 66(2):417-24. PubMed ID: 12889013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A versatile biodegradable polymer with a thermo-reversible/irreversible transition.
    Tanimoto F; Kitamura Y; Ono T; Yoshizawa H
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):606-10. PubMed ID: 20356255
    [No Abstract]   [Full Text] [Related]  

  • 32. The effect of water uptake on the behaviour of hydrophilic cements in confined environments.
    Boesel LF; Reis RL
    Biomaterials; 2006 Nov; 27(33):5627-33. PubMed ID: 16901538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-demand release by ultrasound from osmotically swollen hydrophobic matrices.
    Aschkenasy C; Kost J
    J Control Release; 2005 Dec; 110(1):58-66. PubMed ID: 16257468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exhibition of soft and tenacious characteristics based on liquid crystal formation by introduction of cholesterol groups on biodegradable lactide copolymer.
    Nagahama K; Ueda Y; Ouchi T; Ohya Y
    Biomacromolecules; 2007 Dec; 8(12):3938-43. PubMed ID: 17979242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophilic matrices to be used as bioactive and degradable bone cements.
    Boesel LF; Reis RL
    J Mater Sci Mater Med; 2004 Apr; 15(4):503-6. PubMed ID: 15332625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(methyl methacrylate)--aqueous phase blends: in situ curing porous materials.
    De Wijn JR
    J Biomed Mater Res; 1976 Jul; 10(4):625-35. PubMed ID: 947924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and in vitro degradation of poly(2,3-(1,4-diethyl tartrate)-co-2,3-isopropyliden tartrate).
    Schliecker G; Schmidt C; Fuchs S; Kissel T
    J Control Release; 2004 Jul; 98(1):11-23. PubMed ID: 15245885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface modification of microspheres with steric stabilizing and cationic polymers for gene delivery.
    Davies OR; Head L; Armitage D; Pearson EA; Davies MC; Marlow M; Stolnik S
    Langmuir; 2008 Jul; 24(14):7138-46. PubMed ID: 18558783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro study on tamsulosin release kinetics from biodegradable PLGA in situ implants.
    Elias-Al-Mamun M; Khan HA; Dewan I; Jalil RU
    Pak J Pharm Sci; 2009 Oct; 22(4):360-7. PubMed ID: 19783512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.