BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19435617)

  • 1. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.
    Dasgupta S; Bandyopadhyay A; Bose S
    Acta Biomater; 2009 Oct; 5(8):3112-21. PubMed ID: 19435617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.
    Liu TY; Chen SY; Liu DM; Liou SC
    J Control Release; 2005 Sep; 107(1):112-21. PubMed ID: 15982777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-beta-tricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO(4)(2-) ions on beta-TCP synthesis and its characterization.
    Abdel-Fattah WI; Reicha FM; Elkhooly TA
    Biomed Mater; 2008 Sep; 3(3):034121. PubMed ID: 18765896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin.
    Zhao J; Zhao J; Qian Y; Zhang X; Zhou F; Zhang H; Lu H; Chen J; Wang X; Yu W
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():194-200. PubMed ID: 25746262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight.
    Leo E; Scatturin A; Vighi E; Dalpiaz A
    J Nanosci Nanotechnol; 2006; 6(9-10):3070-9. PubMed ID: 17048520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tricalcium phosphate and tricalcium phosphate/polycaprolactone particulate composite for controlled release of protein.
    Vahabzadeh S; Edgington J; Bose S
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3576-82. PubMed ID: 23910252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate.
    Tazaki J; Murata M; Akazawa T; Yamamoto M; Ito K; Arisue M; Shibata T; Tabata Y
    Biomed Mater Eng; 2009; 19(2-3):141-6. PubMed ID: 19581707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium phosphate nanocarriers dual-loaded with bovine serum albumin and ibuprofen: facile synthesis, sequential drug loading and sustained drug release.
    Zhao XY; Zhu YJ; Chen F; Wu J
    Chem Asian J; 2012 Jun; 7(7):1610-5. PubMed ID: 22504936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energy-efficient microwave method.
    Reardon PJ; Huang J; Tang J
    J Biomed Mater Res A; 2015 Dec; 103(12):3781-9. PubMed ID: 26014443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages.
    Perkin KK; Turner JL; Wooley KL; Mann S
    Nano Lett; 2005 Jul; 5(7):1457-61. PubMed ID: 16178257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers.
    Sampath Kumar TS; Madhumathi K; Rajkamal B; Zaheatha S; Rajathi Malar A; Alamelu Bai S
    Colloids Surf B Biointerfaces; 2014 Nov; 123():542-8. PubMed ID: 25444657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology controlled porous calcium phosphate nanoplates and nanorods with enhanced protein loading and release functionality.
    Reardon PJ; Huang J; Tang J
    Adv Healthc Mater; 2013 May; 2(5):682-6. PubMed ID: 23404951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Protein-Peptide-Calcium Phosphate Composites for Controlled Protein Release.
    Kato K; Lee S; Nagata F
    Molecules; 2020 May; 25(10):. PubMed ID: 32423135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine albumin release and degradation analysis of dicalcium phosphate dihydrate cement.
    Metz J; Sargent P; Chu TM
    Biomed Sci Instrum; 2006; 42():296-301. PubMed ID: 16817624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a beta-tricalcium phosphate nanocoating and its protein adsorption behaviour by quartz crystal microbalance with dissipation technique.
    Pang D; He L; Wei L; Zheng H; Deng C
    Colloids Surf B Biointerfaces; 2018 Feb; 162():1-7. PubMed ID: 29132041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of bovine serum albumin into biomimetic coatings on titanium with high loading efficacy and its release behavior.
    Yu X; Qu H; Knecht DA; Wei M
    J Mater Sci Mater Med; 2009 Jan; 20(1):287-94. PubMed ID: 18763021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic calcium phosphate coating on Ti wires versus flat substrates: structure and mechanism of formation.
    Reiner T; Gotman I
    J Mater Sci Mater Med; 2010 Feb; 21(2):515-23. PubMed ID: 19851841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers.
    Mukherjee B; Santra K; Pattnaik G; Ghosh S
    Int J Nanomedicine; 2008; 3(4):487-96. PubMed ID: 19337417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery.
    Chen X; Lv G; Zhang J; Tang S; Yan Y; Wu Z; Su J; Wei J
    Int J Nanomedicine; 2014; 9():1957-65. PubMed ID: 24855351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.