These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19435933)

  • 41. Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen.
    Maejima K; Kitazawa Y; Tomomitsu T; Yusa A; Neriya Y; Himeno M; Yamaji Y; Oshima K; Namba S
    Plant Signal Behav; 2015; 10(8):e1042635. PubMed ID: 26179462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Flanagan CA; Hu Y; Ma H
    Plant J; 1996 Aug; 10(2):343-53. PubMed ID: 8771788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis.
    Adamczyk BJ; Lehti-Shiu MD; Fernandez DE
    Plant J; 2007 Jun; 50(6):1007-19. PubMed ID: 17521410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution in action: following function in duplicated floral homeotic genes.
    Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B
    Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.
    Turchi L; Baima S; Morelli G; Ruberti I
    J Exp Bot; 2015 Aug; 66(16):5043-53. PubMed ID: 25911742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning.
    Nishimura T; Wada T; Yamamoto KT; Okada K
    Plant Cell; 2005 Nov; 17(11):2940-53. PubMed ID: 16227452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC.
    Proveniers M; Rutjens B; Brand M; Smeekens S
    Plant J; 2007 Dec; 52(5):899-913. PubMed ID: 17908157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    de Folter S; Immink RG; Kieffer M; Parenicová L; Henz SR; Weigel D; Busscher M; Kooiker M; Colombo L; Kater MM; Davies B; Angenent GC
    Plant Cell; 2005 May; 17(5):1424-33. PubMed ID: 15805477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing the redundancy of MADS-box genes during carpel and ovule development.
    Pinyopich A; Ditta GS; Savidge B; Liljegren SJ; Baumann E; Wisman E; Yanofsky MF
    Nature; 2003 Jul; 424(6944):85-8. PubMed ID: 12840762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Gregis V; Sessa A; Colombo L; Kater MM
    Plant Cell; 2006 Jun; 18(6):1373-82. PubMed ID: 16679456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots.
    Fourquin C; Ferrándiz C
    New Phytol; 2014 May; 202(3):1001-1013. PubMed ID: 24483275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms.
    Zhang P; Tan HT; Pwee KH; Kumar PP
    Plant J; 2004 Feb; 37(4):566-77. PubMed ID: 14756763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy.
    Yamaguchi N; Huang J; Tatsumi Y; Abe M; Sugano SS; Kojima M; Takebayashi Y; Kiba T; Yokoyama R; Nishitani K; Sakakibara H; Ito T
    Nat Commun; 2018 Dec; 9(1):5290. PubMed ID: 30538233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes.
    Nole-Wilson S; Krizek BA
    Plant Physiol; 2006 Jul; 141(3):977-87. PubMed ID: 16714408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SKIP Interacts with the Paf1 Complex to Regulate Flowering via the Activation of FLC Transcription in Arabidopsis.
    Cao Y; Wen L; Wang Z; Ma L
    Mol Plant; 2015 Dec; 8(12):1816-9. PubMed ID: 26384244
    [No Abstract]   [Full Text] [Related]  

  • 59. JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field.
    Sauret-Güeto S; Schiessl K; Bangham A; Sablowski R; Coen E
    PLoS Biol; 2013; 11(4):e1001550. PubMed ID: 23653565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants.
    Fornara F; Gregis V; Pelucchi N; Colombo L; Kater M
    J Exp Bot; 2008; 59(8):2181-90. PubMed ID: 18453531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.