BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19436091)

  • 1. A new AFM-HRTEM combined technique for probing isolated carbon nanotubes.
    Kuwahara S; Sugai T; Shinohara H
    Nanotechnology; 2009 Jun; 20(22):225702. PubMed ID: 19436091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes.
    Almaqwashi AA; Kevek JW; Burton RM; DeBorde T; Minot ED
    Nanotechnology; 2011 Jul; 22(27):275717. PubMed ID: 21613731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube nanoelectronic devices compatible with transmission electron microscopy.
    Wang H; Luo J; Schäffel F; Rümmeli MH; Briggs GA; Warner JH
    Nanotechnology; 2011 Jun; 22(24):245305. PubMed ID: 21508501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes.
    Wang MS; Bando Y; Rodriguez-Manzo JA; Banhart F; Golberg D
    ACS Nano; 2009 Sep; 3(9):2632-8. PubMed ID: 19678671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes.
    Ballesteros B; Tobias G; Shao L; Pellicer E; Nogués J; Mendoza E; Green ML
    Small; 2008 Sep; 4(9):1501-6. PubMed ID: 18702121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy measurements of peptide-wrapped single-walled carbon nanotube diameters.
    Poenitzsch VZ; Musselman IH
    Microsc Microanal; 2006 Jun; 12(3):221-7. PubMed ID: 17481358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips.
    Edgeworth JP; Burt DP; Dobson PS; Weaver JM; Macpherson JV
    Nanotechnology; 2010 Mar; 21(10):105605. PubMed ID: 20160341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM and TEM observations of alpha-helix to beta-sheet conformational change occurring on carbon nanotubes.
    Sugiyama Y; Inoue Y; Muneyuki E; Haneda H; Fujimoto M
    J Electron Microsc (Tokyo); 2006 Jun; 55(3):143-9. PubMed ID: 16916880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission.
    Kaiser M; Doytcheva M; Verheijen M; de Jonge N
    Ultramicroscopy; 2006; 106(10):902-8. PubMed ID: 16737778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurements of interactions between polypeptides and carbon nanotubes.
    Li X; Chen W; Zhan Q; Dai L; Sowards L; Pender M; Naik RR
    J Phys Chem B; 2006 Jun; 110(25):12621-5. PubMed ID: 16800593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable preparation of triple-walled carbon nanotubes and their growth mechanism.
    Qiu H; Shi Z; Gu Z; Qiu J
    Chem Commun (Camb); 2007 Mar; (10):1092-4. PubMed ID: 17325816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The identification of inner tube defects in double-wall carbon nanotubes.
    Allen CS; Robertson AW; Kirkland AI; Warner JH
    Small; 2012 Dec; 8(24):3810-5. PubMed ID: 22961712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography.
    Sun Choi J; Bae S; Jung Ahn S; Hyun Kim D; Young Jung K; Han C; Choo Chung C; Lee H
    Ultramicroscopy; 2007 Oct; 107(10-11):1091-4. PubMed ID: 17604910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified route to multi-walled carbon nanotube synthesis by aerosol assisted chemical vapor deposition.
    Antúnez-Flores W; Valenzuela-Muñiz AM; Amézaga-Madrid P; Alonso-Nuñez G; Verde Y; Martínez-Sánchez R; Miki-Yoshida M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6451-5. PubMed ID: 19205220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells.
    Chin SF; Baughman RH; Dalton AB; Dieckmann GR; Draper RK; Mikoryak C; Musselman IH; Poenitzsch VZ; Xie H; Pantano P
    Exp Biol Med (Maywood); 2007 Oct; 232(9):1236-44. PubMed ID: 17895532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.