These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19436373)

  • 1. Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle.
    Westphal V; Rollins A; Radhakrishnan S; Izatt J
    Opt Express; 2002 May; 10(9):397-404. PubMed ID: 19436373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of refractive distortion in whole-eye optical coherence tomography imaging of the mouse eye.
    Tan J; Qiu R; Ding X; Dai C; Meng J; Zhao J; Ma F; Qi S
    J Biophotonics; 2022 Dec; 15(12):e202200146. PubMed ID: 36053933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axial ultrasound B-scans of the entire eye with a 20-MHz linear array: correction of crystalline lens phase aberration by applying Fermat's principle.
    Mateo T; Chang A; Mofid Y; Pisella PJ; Ossant F
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2149-66. PubMed ID: 24988589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermat's principle and the formal equivalence of local light-ray rotation and refraction at the interface between homogeneous media with a complex refractive index ratio.
    Sundar B; Hamilton AC; Courtial J
    Opt Lett; 2009 Feb; 34(3):374-6. PubMed ID: 19183663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermat's principle of least time predicts refraction of ant trails at substrate borders.
    Oettler J; Schmid VS; Zankl N; Rey O; Dress A; Heinze J
    PLoS One; 2013; 8(3):e59739. PubMed ID: 23527263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating light trace in a gradient-refractive-index medium: a Lagrangian optics method.
    Liu W; Hu H; Liu F; Zhao H
    Opt Express; 2019 Feb; 27(4):4714-4726. PubMed ID: 30876082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed derivation of the generalized Snell-Descartes laws from Fermat's principle.
    Rousseau E; Felbacq D
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):676-681. PubMed ID: 37132960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ray refraction in uniaxial crystals by Fermat's principle.
    Wang P
    Appl Opt; 2018 Jun; 57(18):4950-4954. PubMed ID: 30117950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors.
    Wang D; Liang P; Samuelson S; Jia H; Ma J; Xie H
    Biomed Opt Express; 2013; 4(10):2066-77. PubMed ID: 24156064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging.
    Ortiz S; Siedlecki D; Grulkowski I; Remon L; Pascual D; Wojtkowski M; Marcos S
    Opt Express; 2010 Feb; 18(3):2782-96. PubMed ID: 20174107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalization of ray tracing in symmetric gradient-index media by Fermat's ray invariants.
    Gómez-Correa JE; Padilla-Ortiz AL; Jaimes-Nájera A; Trevino JP; Chávez-Cerda S
    Opt Express; 2021 Oct; 29(21):33009-33026. PubMed ID: 34809121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional inverse problem of geometrical optics: a mathematical comparison between Fermat's principle and the eikonal equation.
    Borghero F; Demontis F
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1710-22. PubMed ID: 27607492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermat's principle and nonlinear traveltime tomography.
    Berryman JG
    Phys Rev Lett; 1989 Jun; 62(25):2953-2956. PubMed ID: 10040136
    [No Abstract]   [Full Text] [Related]  

  • 14. Transformation optics based on unitary vectors and Fermat's principle for arbitrary spatial transformation design.
    Jarutatsanangkoon P; Mohammed WS; Pijitrojana W
    Appl Opt; 2018 Oct; 57(29):8632-8639. PubMed ID: 30461937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ocular magnification on macular measurements made using spectral domain optical coherence tomography.
    Parthasarathy MK; Bhende M
    Indian J Ophthalmol; 2015 May; 63(5):427-31. PubMed ID: 26139805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeform imaging systems: Fermat's principle unlocks "first time right" design.
    Duerr F; Thienpont H
    Light Sci Appl; 2021 May; 10(1):95. PubMed ID: 33958573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography for quantitative surface topography.
    Ortiz S; Siedlecki D; Remon L; Marcos S
    Appl Opt; 2009 Dec; 48(35):6708-15. PubMed ID: 20011011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Freeform imaging systems: Fermat's principle unlocks "first time right" design.
    Duerr F; Thienpont H
    Light Sci Appl; 2021 May; 10(1):111. PubMed ID: 34050136
    [No Abstract]   [Full Text] [Related]  

  • 19. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy.
    Leung CK; Cheng AC; Chong KK; Leung KS; Mohamed S; Lau CS; Cheung CY; Chu GC; Lai RY; Pang CC; Lam DS
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3178-83. PubMed ID: 17591887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear imaging through a Fermat's golden spiral multicore fiber.
    Sivankutty S; Tsvirkun V; Vanvincq O; Bouwmans G; Andresen ER; Rigneault H
    Opt Lett; 2018 Aug; 43(15):3638-3641. PubMed ID: 30067643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.