These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19436386)
41. Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure. Murphy LR; Yerolatsitis S; Birks TA; Stone JM Opt Express; 2022 Oct; 30(21):37303-37313. PubMed ID: 36258321 [TBL] [Abstract][Full Text] [Related]
42. Tunable third-harmonic generation in a solid-core tellurite glass fiber. Lin A; Ryasnyanskiy A; Toulouse J Opt Lett; 2011 Sep; 36(17):3437-9. PubMed ID: 21886236 [TBL] [Abstract][Full Text] [Related]
43. Flexible hollow waveguides for delivery of excimer-laser light. Matsuura Y; Miyagi M Opt Lett; 1998 Aug; 23(15):1226-8. PubMed ID: 18087482 [TBL] [Abstract][Full Text] [Related]
44. Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases. Yalin AP; DeFoort M; Willson B; Matsuura Y; Miyagi M Opt Lett; 2005 Aug; 30(16):2083-5. PubMed ID: 16127917 [TBL] [Abstract][Full Text] [Related]
45. AgI-coated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications. Hongo A; Sato S; Hattori A; Iwai K; Takaku H; Miyagi M Appl Opt; 2012 Jan; 51(1):1-7. PubMed ID: 22270406 [TBL] [Abstract][Full Text] [Related]
46. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies. Chen Q; Wang H; Wang Q; Chen Q; Hao Y Appl Opt; 2015 Feb; 54(4):946-52. PubMed ID: 25967810 [TBL] [Abstract][Full Text] [Related]
47. Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides. Chen K; Zhao Z; Zhang X; Zhang X; Zhu X; Shi Y Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974732 [TBL] [Abstract][Full Text] [Related]
48. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Huang X; Fang Z; Peng Z; Ma Z; Guo H; Qiu J; Dong G Opt Express; 2017 Aug; 25(17):19691-19700. PubMed ID: 29041657 [TBL] [Abstract][Full Text] [Related]
49. Fabrication of hollow waveguides for CO2 lasers. Komachi Y; Wakaki M; Kanai G Appl Opt; 2000 Apr; 39(10):1555-60. PubMed ID: 18345051 [TBL] [Abstract][Full Text] [Related]
50. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications. Sultana T; Georgiev GL; Baird RJ; Auner GW; Newaz G; Patwa R; Herfurth HJ J Mech Behav Biomed Mater; 2009 Jul; 2(3):237-42. PubMed ID: 19627828 [TBL] [Abstract][Full Text] [Related]
55. Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides. Wang Y; Hongo A; Kato Y; Shimomura T; Miura D; Miyagi M Appl Opt; 1997 May; 36(13):2886-92. PubMed ID: 18253287 [TBL] [Abstract][Full Text] [Related]
56. Silver-coated hollow-glass waveguide for applications at 800 nm. Mohebbi M; Fedosejevs R; Gopal V; Harrington JA Appl Opt; 2002 Nov; 41(33):7031-5. PubMed ID: 12463249 [TBL] [Abstract][Full Text] [Related]
57. Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber. Cheng T; Kanou Y; Xue X; Deng D; Matsumoto M; Misumi T; Suzuki T; Ohishi Y Opt Express; 2014 Sep; 22(19):23019-25. PubMed ID: 25321772 [TBL] [Abstract][Full Text] [Related]
58. Inactivation of algal blooms in eutrophic water of drinking water supplies with the photocatalysis of TiO2 thin film on hollow glass beads. Kim SC; Lee DK Water Sci Technol; 2005; 52(9):145-52. PubMed ID: 16445183 [TBL] [Abstract][Full Text] [Related]
59. Infrared hollow glass waveguides fabricated by chemical vapor deposition. Matsuura Y; Harrington JA Opt Lett; 1995 Oct; 20(20):2078-80. PubMed ID: 19862256 [TBL] [Abstract][Full Text] [Related]