BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19436886)

  • 1. Sequence selective dual-emission detection of (i, i + 1) bis-phosphorylated peptide using diazastilbene-type Zn(II)-Dpa chemosensor.
    Ishida Y; Inoue MA; Inoue T; Ojida A; Hamachi I
    Chem Commun (Camb); 2009 May; (20):2848-50. PubMed ID: 19436886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a hybrid biosensor for enhanced phosphopeptide recognition based on a phosphoprotein binding domain coupled with a fluorescent chemosensor.
    Anai T; Nakata E; Koshi Y; Ojida A; Hamachi I
    J Am Chem Soc; 2007 May; 129(19):6232-9. PubMed ID: 17441721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ATP fluorescent chemosensor based on a Zn(II)-complexed dipicolylamine receptor coupled with a naphthalimide chromophore.
    Moro AJ; Cywinski PJ; Körsten S; Mohr GJ
    Chem Commun (Camb); 2010 Feb; 46(7):1085-7. PubMed ID: 20126721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrophosphate-selective fluorescent chemosensor based on 1,8-naphthalimide-DPA-Zn(II) complex and its application for cell imaging.
    Zhang JF; Kim S; Han JH; Lee SJ; Pradhan T; Cao QY; Lee SJ; Kang C; Kim JS
    Org Lett; 2011 Oct; 13(19):5294-7. PubMed ID: 21899305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins.
    Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI
    J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A selective fluorescent chemosensor for phosphoserine.
    Cooley CM; Hettie KS; Klockow JL; Garrison S; Glass TE
    Org Biomol Chem; 2013 Nov; 11(42):7387-92. PubMed ID: 24065122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor.
    Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I
    J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mononuclear Zn(II)- and Cu(II)-complexes of a hydroxynaphthalene-derived dipicolylamine: fluorescent sensing behaviours toward pyrophosphate ions.
    Roy B; Rao AS; Ahn KH
    Org Biomol Chem; 2011 Oct; 9(22):7774-9. PubMed ID: 21952647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.
    Hu X; Wang Q; Liu Y; Liu H; Qin C; Cheng K; Robinson W; Gray BD; Pak KY; Yu A; Cheng Z
    Biomaterials; 2014 Aug; 35(26):7511-21. PubMed ID: 24912814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time fluorescence monitoring of GSK3beta-catalyzed phosphoryation by use of a BODIPY-based Zn(II)-Dpa chemosensor.
    Sakamoto T; Inoue MA; Ojida A; Hamachi I
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4175-7. PubMed ID: 19546004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of sensing ribonucleopeptides for small ligands.
    Hagihara M; Hasegawa T; Tanabe Y; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):33-4. PubMed ID: 17150464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides.
    Jolliffe KA
    Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc sensors with lower binding affinities for cellular imaging.
    Kim JH; Hwang IH; Jang SP; Kang J; Kim S; Noh I; Kim Y; Kim C; Harrison RG
    Dalton Trans; 2013 Apr; 42(15):5500-7. PubMed ID: 23426272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of a new Rhodamine B and Di(2-picolyl)amine conjugate as a highly sensitive and selective chemosensor for Al3+ and its application in living-cell imaging.
    Bao X; Cao Q; Xu Y; Gao Y; Xu Y; Nie X; Zhou B; Pang T; Zhu J
    Bioorg Med Chem; 2015 Feb; 23(4):694-702. PubMed ID: 25614113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipicolylamine as a unique structural switching element for helical peptides.
    Azuma Y; Imai H; Yoshimura T; Kawabata T; Imanishi M; Futaki S
    Org Biomol Chem; 2012 Aug; 10(30):6062-8. PubMed ID: 22613959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and photophysical properties of polyfluorene with dipicolylamine groups on the side chain: highly selective and sensitive detection of histidine.
    Zhang W; Qin J; Yang C
    Macromol Rapid Commun; 2013 Jan; 34(2):175-9. PubMed ID: 23060042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution.
    Guo X; Qian X; Jia L
    J Am Chem Soc; 2004 Mar; 126(8):2272-3. PubMed ID: 14982408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion sensor-based ratiometric peptide probe for protein kinase activity.
    Kikuchi K; Hashimoto S; Mizukami S; Nagano T
    Org Lett; 2009 Jul; 11(13):2732-5. PubMed ID: 19552460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors.
    Ojida A; Mito-oka Y; Sada K; Hamachi I
    J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent zinc sensor with minimized proton-induced interferences: photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions.
    Kwon JE; Lee S; You Y; Baek KH; Ohkubo K; Cho J; Fukuzumi S; Shin I; Park SY; Nam W
    Inorg Chem; 2012 Aug; 51(16):8760-74. PubMed ID: 22534151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.