These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 1943698)
1. The repair of double-strand breaks and S1 nuclease-sensitive sites can be monitored chromosome-specifically in Saccharomyces cerevisiae using pulse-field gel electrophoresis. Geigl EM; Eckardt-Schupp F Mol Microbiol; 1991 Jul; 5(7):1615-20. PubMed ID: 1943698 [TBL] [Abstract][Full Text] [Related]
2. Repair of gamma ray-induced S1 nuclease hypersensitive sites in yeast depends on homologous mitotic recombination and a RAD18-dependent function. Geigl EM; Eckardt-Schupp F Curr Genet; 1991 Jul; 20(1-2):33-7. PubMed ID: 1934115 [TBL] [Abstract][Full Text] [Related]
3. Chromosome-specific identification and quantification of S1 nuclease-sensitive sites in yeast chromatin by pulsed-field gel electrophoresis. Geigl EM; Eckardt-Schupp F Mol Microbiol; 1990 May; 4(5):801-10. PubMed ID: 2201869 [TBL] [Abstract][Full Text] [Related]
4. An assay for quantifying DNA double-strand break repair that is suitable for small numbers of unlabeled cells. Longo JA; Nevaldine B; Longo SL; Winfield JA; Hahn PJ Radiat Res; 1997 Jan; 147(1):35-40. PubMed ID: 8989367 [TBL] [Abstract][Full Text] [Related]
5. [Mapping segments of the S1 nuclease hypersensitive sites in chromosome III of Saccharomyces cerevisiae]. Svetlova EIu; Razin SV; Filipski J Dokl Akad Nauk; 1997 Apr; 353(6):831-3. PubMed ID: 9273055 [No Abstract] [Full Text] [Related]
6. Application of pulsed field gel electrophoresis to determine gamma-ray-induced double-strand breaks in yeast chromosomal molecules. Friedl AA; Beisker W; Hahn K; Eckardt-Schupp F; Kellerer AM Int J Radiat Biol; 1993 Feb; 63(2):173-81. PubMed ID: 8094413 [TBL] [Abstract][Full Text] [Related]
7. Repair of DNA double-strand breaks induced in Saccharomyces cerevisiae using different gamma-ray dose-rates: a pulsed-field gel electrophoresis analysis. Dardalhon M; Nohturfft A; Meniel V; Averbeck D Int J Radiat Biol; 1994 Mar; 65(3):307-14. PubMed ID: 7908309 [TBL] [Abstract][Full Text] [Related]
8. S1 nuclease-sensitive sites in yeast DNA: an assay for radiation-induced base damage. Andrews J; Martin-Bertram H; Hagen U Int J Radiat Biol Relat Stud Phys Chem Med; 1984 May; 45(5):497-504. PubMed ID: 6327551 [TBL] [Abstract][Full Text] [Related]
9. Monitoring of DNA Replication and DNA Double-Strand Breaks in Saccharomyces cerevisiae by Pulsed-Field Gel Electrophoresis (PFGE). Keyamura K; Hishida T Methods Mol Biol; 2020; 2119():123-133. PubMed ID: 31989520 [TBL] [Abstract][Full Text] [Related]
10. Pulsed-field gel electrophoresis of chromosomal DNA of Saccharomyces pastorianus after exposure to x-rays (30-50 keV) and neutrons (14 MeV). Pötter T; Köhnlein W Radiat Environ Biophys; 2001 Mar; 40(1):39-45. PubMed ID: 11357709 [TBL] [Abstract][Full Text] [Related]
11. Blunt-ended DNA double-strand breaks induced by endonucleases PvuII and EcoRV are poor substrates for repair in Saccharomyces cerevisiae. Westmoreland JW; Summers JA; Holland CL; Resnick MA; Lewis LK DNA Repair (Amst); 2010 Jun; 9(6):617-26. PubMed ID: 20356803 [TBL] [Abstract][Full Text] [Related]
12. DNA homology and chromosome stability: a sensitive yeast genetic system for identifying double-stranded DNA damage. Resnick MA; Nilsson-Tillgren T Prog Clin Biol Res; 1990; 340B():363-9. PubMed ID: 2203015 [TBL] [Abstract][Full Text] [Related]
13. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. Zenvirth D; Arbel T; Sherman A; Goldway M; Klein S; Simchen G EMBO J; 1992 Sep; 11(9):3441-7. PubMed ID: 1324174 [TBL] [Abstract][Full Text] [Related]
14. Meiotic double-strand breaks in yeast artificial chromosomes containing human DNA. Ira G; Svetlova E; Filipski J Nucleic Acids Res; 1998 May; 26(10):2415-9. PubMed ID: 9580694 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal damages by ethanol and acetaldehyde in Saccharomyces cerevisiae as studied by pulsed field gel electrophoresis. Ristow H; Seyfarth A; Lochmann ER Mutat Res; 1995 Feb; 326(2):165-70. PubMed ID: 7529880 [TBL] [Abstract][Full Text] [Related]
16. Analysis of DNA double strand breakage and repair using orthogonal field alternation gel electrophoresis. Contopoulou CR; Cook VE; Mortimer RK Yeast; 1987 Jun; 3(2):71-6. PubMed ID: 3332967 [TBL] [Abstract][Full Text] [Related]
17. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Saffran WA; Greenberg RB; Thaler-Scheer MS; Jones MM Nucleic Acids Res; 1994 Jul; 22(14):2823-9. PubMed ID: 8052537 [TBL] [Abstract][Full Text] [Related]
18. Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining. Liang Z; Sunder S; Nallasivam S; Wilson TE Nucleic Acids Res; 2016 Apr; 44(6):2769-81. PubMed ID: 26773053 [TBL] [Abstract][Full Text] [Related]
19. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Llorente B; Symington LS Mol Cell Biol; 2004 Nov; 24(21):9682-94. PubMed ID: 15485933 [TBL] [Abstract][Full Text] [Related]
20. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]