These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19437435)

  • 1. Polymer fibers as contact guidance to orient microvascularization in a 3D environment.
    Sukmana I; Vermette P
    J Biomed Mater Res A; 2010 Mar; 92(4):1587-97. PubMed ID: 19437435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system.
    Hadjizadeh A; Doillon CJ
    J Tissue Eng Regen Med; 2010 Oct; 4(7):524-31. PubMed ID: 20872739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of co-culture with fibroblasts and angiogenic growth factors on microvascular maturation and multi-cellular lumen formation in HUVEC-oriented polymer fibre constructs.
    Sukmana I; Vermette P
    Biomaterials; 2010 Jul; 31(19):5091-9. PubMed ID: 20347133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Peters K; Huang Q; Funk A; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 Jun; 26(17):3461-9. PubMed ID: 15621235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
    Wong HK; Ivan Lam CR; Wen F; Mark Chong SK; Tan NS; Jerry C; Pal M; Tan LP
    Biofabrication; 2016 Jan; 8(1):015004. PubMed ID: 26741237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally reversible polymer gel for chondrocyte culture.
    Au A; Ha J; Polotsky A; Krzyminski K; Gutowska A; Hungerford DS; Frondoza CG
    J Biomed Mater Res A; 2003 Dec; 67(4):1310-9. PubMed ID: 14624518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrin as a cell carrier in cardiovascular tissue engineering applications.
    Mol A; van Lieshout MI; Dam-de Veen CG; Neuenschwander S; Hoerstrup SP; Baaijens FP; Bouten CV
    Biomaterials; 2005 Jun; 26(16):3113-21. PubMed ID: 15603806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels.
    Siegwart DJ; Bencherif SA; Srinivasan A; Hollinger JO; Matyjaszewski K
    J Biomed Mater Res A; 2008 Nov; 87(2):345-58. PubMed ID: 18181103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent tethering of functional microgel films onto poly(ethylene terephthalate) surfaces.
    Singh N; Bridges AW; García AJ; Lyon LA
    Biomacromolecules; 2007 Oct; 8(10):3271-5. PubMed ID: 17877399
    [No Abstract]   [Full Text] [Related]  

  • 13. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold.
    Pankajakshan D; Krishnan V K; Krishnan LK
    J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment.
    Hadjizadeh A; Doillon CJ; Vermette P
    Biomacromolecules; 2007 Mar; 8(3):864-73. PubMed ID: 17309296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulated fibronectin anchorage at polymer substrates controls angiogenesis.
    Pompe T; Markowski M; Werner C
    Tissue Eng; 2004; 10(5-6):841-8. PubMed ID: 15265302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion limits of an in vitro thick prevascularized tissue.
    Griffith CK; Miller C; Sainson RC; Calvert JW; Jeon NL; Hughes CC; George SC
    Tissue Eng; 2005; 11(1-2):257-66. PubMed ID: 15738680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential.
    Kwon IK; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers.
    Sun T; Norton D; McKean RJ; Haycock JW; Ryan AJ; MacNeil S
    Biotechnol Bioeng; 2007 Aug; 97(5):1318-28. PubMed ID: 17171721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro.
    Urech L; Bittermann AG; Hubbell JA; Hall H
    Biomaterials; 2005 Apr; 26(12):1369-79. PubMed ID: 15482824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.