These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 19437438)
1. Bioceramic inlays do not improve mechanical incorporation of grit-blasted titanium stems in the proximal sheep femur. Keränen P; Koort J; Itälä A; Ylänen H; Dalstra M; Hupa M; Kommonen B; Aro HT J Biomed Mater Res A; 2010 Mar; 92(4):1578-86. PubMed ID: 19437438 [TBL] [Abstract][Full Text] [Related]
2. Bioactive glass microspheres as osteopromotive inlays in macrotextured surfaces of Ti and CoCr alloy bone implants: trapezoidal surface grooves without inlay most efficient in resisting torsional forces. Keränen P; Moritz N; Alm JJ; Ylänen H; Kommonen B; Aro HT J Mech Behav Biomed Mater; 2011 Oct; 4(7):1483-91. PubMed ID: 21783158 [TBL] [Abstract][Full Text] [Related]
3. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290 [TBL] [Abstract][Full Text] [Related]
7. Biological fixation of hydroxyapatite-coated versus grit-blasted titanium hip stems: a canine study. Eckardt A; Aberman HM; Cantwell HD; Heine J Arch Orthop Trauma Surg; 2003 Feb; 123(1):28-35. PubMed ID: 12582793 [TBL] [Abstract][Full Text] [Related]
8. Influence of biomaterial surface texture on bone ingrowth in the rabbit femur. Friedman RJ; An YH; Ming J; Draughn RA; Bauer TW J Orthop Res; 1996 May; 14(3):455-64. PubMed ID: 8676259 [TBL] [Abstract][Full Text] [Related]
9. Effects of a cell adhesion molecule coating on the blasted surface of titanium implants on bone healing in the rabbit femur. Park JW; Lee SG; Choi BJ; Suh JY Int J Oral Maxillofac Implants; 2007; 22(4):533-41. PubMed ID: 17929513 [TBL] [Abstract][Full Text] [Related]
10. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Salou L; Hoornaert A; Louarn G; Layrolle P Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926 [TBL] [Abstract][Full Text] [Related]
11. Characterization of bone around titanium implants and bioactive glass particles: an experimental study in rats. Gorustovich A; Rosenbusch M; Guglielmotti MB Int J Oral Maxillofac Implants; 2002; 17(5):644-50. PubMed ID: 12381064 [TBL] [Abstract][Full Text] [Related]
12. Bioactive glass granules as extender of autogenous bone grafting in cementless intercalary implant of the canine femur. Keränen P; Itälä A; Koort J; Kohonen I; Dalstra M; Kommonen B; Aro HT Scand J Surg; 2007; 96(3):243-51. PubMed ID: 17966751 [TBL] [Abstract][Full Text] [Related]
13. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible. Wei N; Bin S; Jing Z; Wei S; Yingqiong Z Am J Dent; 2014 Jun; 27(3):171-6. PubMed ID: 25208367 [TBL] [Abstract][Full Text] [Related]
14. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Wennerberg A; Albrektsson T; Johansson C; Andersson B Biomaterials; 1996 Jan; 17(1):15-22. PubMed ID: 8962942 [TBL] [Abstract][Full Text] [Related]
15. The removal of Al2O3 particles from grit-blasted titanium implant surfaces: effects on biocompatibility, osseointegration and interface strength in vivo. Rüger M; Gensior TJ; Herren C; von Walter M; Ocklenburg C; Marx R; Erli HJ Acta Biomater; 2010 Jul; 6(7):2852-61. PubMed ID: 20080212 [TBL] [Abstract][Full Text] [Related]