These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19437458)

  • 1. A Lorentz model for weak magnetic field bioeffects: part II--secondary transduction mechanisms and measures of reactivity.
    Muehsam DJ; Pilla AA
    Bioelectromagnetics; 2009 Sep; 30(6):476-88. PubMed ID: 19437458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lorentz model for weak magnetic field bioeffects: part I--thermal noise is an essential component of AC/DC effects on bound ion trajectory.
    Muehsam DJ; Pilla AA
    Bioelectromagnetics; 2009 Sep; 30(6):462-75. PubMed ID: 19437460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic fields at resonant conditions for the hydrogen ion affect neurite outgrowth in PC-12 cells: a test of the ion parametric resonance model.
    Trillo MA; Ubeda A; Blanchard JP; House DE; Blackman CF
    Bioelectromagnetics; 1996; 17(1):10-20. PubMed ID: 8742751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lorentz approach to static magnetic field effects on bound-ion dynamics and binding kinetics: thermal noise considerations.
    Muehsam DJ; Pilla AA
    Bioelectromagnetics; 1996; 17(2):89-99. PubMed ID: 9139637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ac and dc magnetic field orientation on nerve cells.
    Blackman CF; Blanchard JP; Benane SG; House DE
    Biochem Biophys Res Commun; 1996 Mar; 220(3):807-11. PubMed ID: 8607846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude and frequency dissociation spectra of ion-protein complexes rotating in magnetic fields.
    Binhi VN
    Bioelectromagnetics; 2000 Jan; 21(1):34-45. PubMed ID: 10615090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waveform magnetic field survey in Russian DC and Swiss AC powered trains: a basis for biologically relevant exposure assessment.
    Ptitsyna NG; Kopytenko YA; Villoresi G; Pfluger DH; Ismaguilov V; Iucci N; Kopytenko EA; Zaitzev DB; Voronov PM; Tyasto MI
    Bioelectromagnetics; 2003 Dec; 24(8):546-56. PubMed ID: 14603474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of Lednev's parametric resonance mechanism.
    Engström S
    Bioelectromagnetics; 1996; 17(1):58-70. PubMed ID: 8742757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of hydrogen bandwidth for the ion parametric resonance model.
    Blackman CF; Blanchard JP; Benane SG; House DE
    Bioelectromagnetics; 1999; 20(1):5-12. PubMed ID: 9915588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions.
    Hendee SP; Faour FA; Christensen DA; Patrick B; Durney CH; Blumenthal DK
    Biophys J; 1996 Jun; 70(6):2915-23. PubMed ID: 8744329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters.
    Pilla AA; Muehsam DJ; Markov MS; Sisken BF
    Bioelectrochem Bioenerg; 1999 Feb; 48(1):27-34. PubMed ID: 10228567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonances of ions in biological systems.
    Engström S; Bowman JD
    Bioelectromagnetics; 2004 Dec; 25(8):620-30. PubMed ID: 15515033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the structure of magnetic fields that induced inhibition of stimulated neurite outgrowth.
    Binhi VN; Blackman CF
    Bioelectromagnetics; 2005 Dec; 26(8):684-9. PubMed ID: 16189823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium binding to metallochromic dyes and calmodulin in the presence of combined, AC-DC magnetic fields.
    Bruckner-Lea C; Durney CH; Janata J; Rappaport C; Kaminski M
    Bioelectromagnetics; 1992; 13(2):147-62. PubMed ID: 1590813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between weak low frequency magnetic fields and cell membranes.
    Bauréus Koch CL; Sommarin M; Persson BR; Salford LG; Eberhardt JL
    Bioelectromagnetics; 2003 Sep; 24(6):395-402. PubMed ID: 12929158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells.
    Blackman CF; Blanchard JP; Benane SG; House DE
    Bioelectromagnetics; 1994; 15(3):239-60. PubMed ID: 8074739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells.
    Kim S; Im WS; Kang L; Lee ST; Chu K; Kim BI
    J Neurosci Methods; 2008 Sep; 174(1):91-6. PubMed ID: 18682261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ion parametric resonance model predicts magnetic field parameters that affect nerve cells.
    Blackman CF; Blanchard JP; Benane SG; House DE
    FASEB J; 1995 Apr; 9(7):547-51. PubMed ID: 7737464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and amplitude windows in the combined action of DC and low frequency AC magnetic fields on ion thermal motion in a macromolecule: theoretical analysis.
    Zhadin M; Barnes F
    Bioelectromagnetics; 2005 May; 26(4):323-30. PubMed ID: 15832338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion parametric resonance: resolving the signal-to-noise-ratio paradox.
    Machlup S
    Electromagn Biol Med; 2007; 26(3):251-6. PubMed ID: 17886011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.