These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1943762)

  • 1. Analysis of the in vivo phosphorylation states of proteins by fast atom bombardment mass spectrometry and other techniques.
    Cohen P; Gibson BW; Holmes CF
    Methods Enzymol; 1991; 201():153-68. PubMed ID: 1943762
    [No Abstract]   [Full Text] [Related]  

  • 2. Liquid secondary ion mass spectrometry of phosphorylated and sulfated peptides and proteins.
    Gibson BW; Cohen P
    Methods Enzymol; 1990; 193():480-501. PubMed ID: 2127451
    [No Abstract]   [Full Text] [Related]  

  • 3. Peptide mapping and purification of phosphopeptides using high-performance liquid chromatography.
    Juhl H; Soderling TR
    Methods Enzymol; 1983; 99():37-48. PubMed ID: 6316098
    [No Abstract]   [Full Text] [Related]  

  • 4. Separation of phosphopeptides from their nonphosphorylated forms by reversed-phase POROS perfusion chromatography at alkaline pH.
    Matsumoto H; Kahn ES; Komori N
    Anal Biochem; 1997 Aug; 251(1):116-9. PubMed ID: 9300092
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry.
    Poulter L; Ang SG; Gibson BW; Williams DH; Holmes CF; Caudwell FB; Pitcher J; Cohen P
    Eur J Biochem; 1988 Aug; 175(3):497-510. PubMed ID: 2842154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination and location of phosphoserine in proteins and peptides by conversion to S-ethylcysteine.
    Meyer HE; Hoffmann-Posorske E; Heilmeyer LM
    Methods Enzymol; 1991; 201():169-85. PubMed ID: 1943763
    [No Abstract]   [Full Text] [Related]  

  • 7. Tertiary structure-selective characterization of protein dithiol groups by phenylarsine oxide modification and mass spectrometric peptide mapping.
    Kussmann M; Przybylski M
    Methods Enzymol; 1995; 251():430-5. PubMed ID: 7651224
    [No Abstract]   [Full Text] [Related]  

  • 8. Mass spectrometric studies of the primary sequence and structure of bovine liver and serum amine oxidase.
    Adams GW; Mayer P; Medzihradszky KF; Burlingame AL
    Methods Enzymol; 1995; 258():90-114. PubMed ID: 8524166
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of sites of protein phosphorylation.
    Aitken A; Learmonth M
    Methods Mol Biol; 1997; 64():293-306. PubMed ID: 9116832
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of recombinant proteins.
    Scoble HA; Martin SA
    Methods Enzymol; 1990; 193():519-36. PubMed ID: 2074834
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of phosphoprotein p19 by liquid chromatography/mass spectrometry. Identification of two proline-directed serine phosphorylation sites and a blocked amino terminus.
    Labdon JE; Nieves E; Schubart UK
    J Biol Chem; 1992 Feb; 267(5):3506-13. PubMed ID: 1737801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry.
    Liao PC; Leykam J; Andrews PC; Gage DA; Allison J
    Anal Biochem; 1994 May; 219(1):9-20. PubMed ID: 8059960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry.
    Smith JB; Sun Y; Smith DL; Green B
    Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry.
    Adamczyk M; Gebler JC; Wu J
    Rapid Commun Mass Spectrom; 2001; 15(16):1481-8. PubMed ID: 11507762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reinvestigation of the phosphorylation of rabbit skeletal-muscle glycogen synthase by cyclic-AMP-dependent protein kinase. Identification of the third site of phosphorylation as serine-7.
    Embi N; Parker PJ; Cohen P
    Eur J Biochem; 1981 Apr; 115(2):405-13. PubMed ID: 6263629
    [No Abstract]   [Full Text] [Related]  

  • 17. Nanoscale separations combined with tandem mass spectrometry.
    Deterding LJ; Moseley MA; Tomer KB; Jorgenson JW
    J Chromatogr; 1991 Aug; 554(1-2):73-82. PubMed ID: 1665498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial characterization of the molecular species of phosphatidylserine from human plasma by high-performance liquid chromatography and fast atom bombardment mass spectrometry.
    Chen S
    J Chromatogr B Biomed Appl; 1994 Nov; 661(1):1-5. PubMed ID: 7866537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A partial sequence of an IgG light chain using continuous flow HPLC-FAB mass spectroscopy.
    Claydon MA; Gordon DB; Garner GV; Lord GA
    Biochem Soc Trans; 1995 Nov; 23(4):633S. PubMed ID: 8654818
    [No Abstract]   [Full Text] [Related]  

  • 20. A mass spectrometric study on the in vivo posttranslational modification of GAP-43.
    Taniguchi H; Suzuki M; Manenti S; Titani K
    J Biol Chem; 1994 Sep; 269(36):22481-4. PubMed ID: 8077193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.