These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19437653)
1. Self-assembled metal atom chains on graphene nanoribbons. Choi SM; Jhi SH Phys Rev Lett; 2008 Dec; 101(26):266105. PubMed ID: 19437653 [TBL] [Abstract][Full Text] [Related]
2. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
3. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups. Tian X; Gu J; Xu JB J Chem Phys; 2014 Jan; 140(4):044712. PubMed ID: 25669572 [TBL] [Abstract][Full Text] [Related]
4. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms. Yu ZL; Wang D; Zhu Z; Zhang ZH Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414 [TBL] [Abstract][Full Text] [Related]
5. Linear indium atom chains at graphene edges. Elibol K; Susi T; Mangler C; Eder D; Meyer JC; Kotakoski J; Hobbs RG; van Aken PA; Bayer BC NPJ 2D Mater Appl; 2023; 7(1):2. PubMed ID: 38665487 [TBL] [Abstract][Full Text] [Related]
6. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study. Kan EJ; Xiang HJ; Yang J; Hou JG J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370 [TBL] [Abstract][Full Text] [Related]
7. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. Li Y; Zhou Z; Shen P; Chen Z ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066 [TBL] [Abstract][Full Text] [Related]
9. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. Sun L; Wei P; Wei J; Sanvito S; Hou S J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127 [TBL] [Abstract][Full Text] [Related]
10. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. García-Fuente A; Gallego LJ; Vega A J Phys Condens Matter; 2015 Apr; 27(13):135301. PubMed ID: 25765052 [TBL] [Abstract][Full Text] [Related]
11. Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Ivanov I; Hu Y; Osella S; Beser U; Wang HI; Beljonne D; Narita A; Müllen K; Turchinovich D; Bonn M J Am Chem Soc; 2017 Jun; 139(23):7982-7988. PubMed ID: 28525278 [TBL] [Abstract][Full Text] [Related]
12. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Qi Z; Zhao F; Zhou X; Sun Z; Park HS; Wu H Nanotechnology; 2010 Jul; 21(26):265702. PubMed ID: 20522927 [TBL] [Abstract][Full Text] [Related]
13. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. Veiga RG; Miwa RH; Srivastava GP J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000 [TBL] [Abstract][Full Text] [Related]
14. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate. Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647 [TBL] [Abstract][Full Text] [Related]
15. Diversified Phenomena in Metal- and Transition-Metal-Adsorbed Graphene Nanoribbons. Lin SY; Tran NTT; Lin MF Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802563 [TBL] [Abstract][Full Text] [Related]
16. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics. Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289 [TBL] [Abstract][Full Text] [Related]
17. Electronic Decoupling and Hole-Doping of Graphene Nanoribbons on Metal Substrates by Chloride Intercalation. Kinikar A; Englmann TG; Di Giovannantonio M; Bassi N; Xiang F; Stolz S; Widmer R; Borin Barin G; Turco E; Eimre K; Merino Díez N; Ortega-Guerrero A; Feng X; Gröning O; Pignedoli CA; Fasel R; Ruffieux P ACS Nano; 2024 Jul; 18(26):16622-16631. PubMed ID: 38904174 [TBL] [Abstract][Full Text] [Related]
18. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
19. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. García-Fuente A; Gallego LJ; Vega A Phys Chem Chem Phys; 2016 Aug; 18(32):22606-16. PubMed ID: 27477688 [TBL] [Abstract][Full Text] [Related]
20. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons. Liu QB; Wu DD; Fu HH Phys Chem Chem Phys; 2017 Oct; 19(39):27132-27139. PubMed ID: 28967009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]