These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19437665)
1. Order and creep in flux lattices and charge density wave pinned by planar defects. Petković A; Nattermann T Phys Rev Lett; 2008 Dec; 101(26):267005. PubMed ID: 19437665 [TBL] [Abstract][Full Text] [Related]
2. Effect of planar defects on the stability of the Bragg glass phase of type-II superconductors. Emig T; Nattermann T Phys Rev Lett; 2006 Oct; 97(17):177002. PubMed ID: 17155497 [TBL] [Abstract][Full Text] [Related]
3. Universal Relaxation in a Holographic Metallic Density Wave Phase. Amoretti A; Areán D; Goutéraux B; Musso D Phys Rev Lett; 2019 Nov; 123(21):211602. PubMed ID: 31809185 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Observation of Columnar Defects and Magnetic Flux Lines in High-Temperature Bi2Sr2CaCu2O8 Superconductors. Dai H; Yoon S; Liu J; Budhani RC; Lieber CM Science; 1994 Sep; 265(5178):1552-5. PubMed ID: 17801531 [TBL] [Abstract][Full Text] [Related]
5. Measurement of the shear strength of a charge density wave. O'Neill K; Cicak K; Thorne RE Phys Rev Lett; 2004 Aug; 93(6):066601. PubMed ID: 15323647 [TBL] [Abstract][Full Text] [Related]
6. Magnetic flux-line lattices and vortices in the copper oxide superconductors. Bishop DJ; Gammel PL; Huse DA; Murray CA Science; 1992 Jan; 255(5041):165-72. PubMed ID: 17756066 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic fingerprints of disorder in flux line lattices and other glassy mesoscopic systems. Emig T; Kardar M Phys Rev Lett; 2000 Sep; 85(10):2176-9. PubMed ID: 10970491 [TBL] [Abstract][Full Text] [Related]
8. Emergence of quasi-long-range order below the Bragg glass transition. Daniilidis ND; Park SR; Dimitrov IK; Lynn JW; Ling XS Phys Rev Lett; 2007 Oct; 99(14):147007. PubMed ID: 17930710 [TBL] [Abstract][Full Text] [Related]
9. Vortex flow and transverse flux screening at the bose glass transition. Smith AW; Jaeger HM; Rosenbaum TF; Petrean AM; Kwok WK; Crabtree GW Phys Rev Lett; 2000 May; 84(21):4974-7. PubMed ID: 10990845 [TBL] [Abstract][Full Text] [Related]
10. Why an ac magnetic field shifts the irreversibility line in type-II superconductors. Brandt EH; Mikitik GP Phys Rev Lett; 2002 Jul; 89(2):027002. PubMed ID: 12097012 [TBL] [Abstract][Full Text] [Related]
11. Realignment of the flux-line lattice by a change in the symmetry of superconductivity in UPt3. Huxley A; Rodiere P; Paul DM; van Dijk N ; Cubitt R; Flouquet J Nature; 2000 Jul; 406(6792):160-4. PubMed ID: 10910349 [TBL] [Abstract][Full Text] [Related]
12. Surface pinning as a determinant of the bulk flux-line lattice structure in copper oxide superconductors. Yoon S; Dai H; Liu J; Lieber CM Science; 1994 Jul; 265(5169):215-8. PubMed ID: 17750661 [TBL] [Abstract][Full Text] [Related]
13. Theory of plastic vortex creep. Kierfeld J; Nordborg H; Vinokur VM Phys Rev Lett; 2000 Dec; 85(23):4948-51. PubMed ID: 11102158 [TBL] [Abstract][Full Text] [Related]
14. Computational studies of history dependence in nematic liquid crystals in random environments. Ranjkesh A; Ambrožič M; Kralj S; Sluckin TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022504. PubMed ID: 25353486 [TBL] [Abstract][Full Text] [Related]
15. Bosonic Mott insulator with Meissner currents. Petrescu A; Le Hur K Phys Rev Lett; 2013 Oct; 111(15):150601. PubMed ID: 24160585 [TBL] [Abstract][Full Text] [Related]
17. Critical state theory for nonparallel flux line lattices in type-II superconductors. Badía A; López C Phys Rev Lett; 2001 Sep; 87(12):127004. PubMed ID: 11580543 [TBL] [Abstract][Full Text] [Related]
18. Criticality, tricriticality, and crystallization in discretized models of electrolytes. Ciach A; Stell G Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016114. PubMed ID: 15324136 [TBL] [Abstract][Full Text] [Related]
19. Collective interaction-driven ratchet for transporting flux quanta. Olson CJ; Reichhardt C; Jankó B; Nori F Phys Rev Lett; 2001 Oct; 87(17):177002. PubMed ID: 11690295 [TBL] [Abstract][Full Text] [Related]
20. Phase transition of q-state clock models on heptagonal lattices. Baek SK; Minnhagen P; Shima H; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011133. PubMed ID: 19658679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]