These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19437673)

  • 1. Approaching the dirac point in high-mobility multilayer epitaxial graphene.
    Orlita M; Faugeras C; Plochocka P; Neugebauer P; Martinez G; Maude DK; Barra AL; Sprinkle M; Berger C; de Heer WA; Potemski M
    Phys Rev Lett; 2008 Dec; 101(26):267601. PubMed ID: 19437673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant excitation of graphene k-phonon and intra-landau-level excitons in magneto-optical spectroscopy [corrected].
    Orlita M; Tan LZ; Potemski M; Sprinkle M; Berger C; de Heer WA; Louie SG; Martinez G
    Phys Rev Lett; 2012 Jun; 108(24):247401. PubMed ID: 23004329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001).
    Hajlaoui M; Sediri H; Pierucci D; Henck H; Phuphachong T; Silly MG; de Vaulchier LA; Sirotti F; Guldner Y; Belkhou R; Ouerghi A
    Sci Rep; 2016 Jan; 6():18791. PubMed ID: 26739366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landau level spectroscopy of ultrathin graphite layers.
    Sadowski ML; Martinez G; Potemski M; Berger C; de Heer WA
    Phys Rev Lett; 2006 Dec; 97(26):266405. PubMed ID: 17280440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How perfect can graphene be?
    Neugebauer P; Orlita M; Faugeras C; Barra AL; Potemski M
    Phys Rev Lett; 2009 Sep; 103(13):136403. PubMed ID: 19905531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AB-stacked multilayer graphene synthesized via chemical vapor deposition: a characterization by hot carrier transport.
    Diaz-Pinto C; De D; Hadjiev VG; Peng H
    ACS Nano; 2012 Feb; 6(2):1142-8. PubMed ID: 22283694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant magnetoresistance of Dirac plasma in high-mobility graphene.
    Xin N; Lourembam J; Kumaravadivel P; Kazantsev AE; Wu Z; Mullan C; Barrier J; Geim AA; Grigorieva IV; Mishchenko A; Principi A; Fal'ko VI; Ponomarenko LA; Geim AK; Berdyugin AI
    Nature; 2023 Apr; 616(7956):270-274. PubMed ID: 37045919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the electron-phonon coupling in multilayer graphene with magnetic fields.
    Faugeras C; Amado M; Kossacki P; Orlita M; Sprinkle M; Berger C; de Heer WA; Potemski M
    Phys Rev Lett; 2009 Oct; 103(18):186803. PubMed ID: 19905824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase space for the breakdown of the quantum Hall effect in epitaxial graphene.
    Alexander-Webber JA; Baker AM; Janssen TJ; Tzalenchuk A; Lara-Avila S; Kubatkin S; Yakimova R; Piot BA; Maude DK; Nicholas RJ
    Phys Rev Lett; 2013 Aug; 111(9):096601. PubMed ID: 24033057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin resonance in presence of a magnetic impurity in graphene.
    Ghosh A; Pinto JW; Frota HO
    J Magn Reson; 2013 Feb; 227():87-92. PubMed ID: 23314256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene bubbles and their role in graphene quantum transport.
    Leconte N; Kim H; Kim HJ; Ha DH; Watanabe K; Taniguchi T; Jung J; Jung S
    Nanoscale; 2017 May; 9(18):6041-6047. PubMed ID: 28443903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy.
    Sun D; Wu ZK; Divin C; Li X; Berger C; de Heer WA; First PN; Norris TB
    Phys Rev Lett; 2008 Oct; 101(15):157402. PubMed ID: 18999638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene.
    Orlita M; Faugeras C; Grill R; Wysmolek A; Strupinski W; Berger C; de Heer WA; Martinez G; Potemski M
    Phys Rev Lett; 2011 Nov; 107(21):216603. PubMed ID: 22181904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy.
    Plochocka P; Faugeras C; Orlita M; Sadowski ML; Martinez G; Potemski M; Goerbig MO; Fuchs JN; Berger C; de Heer WA
    Phys Rev Lett; 2008 Feb; 100(8):087401. PubMed ID: 18352662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphite from the viewpoint of Landau level spectroscopy: an effective graphene bilayer and monolayer.
    Orlita M; Faugeras C; Schneider JM; Martinez G; Maude DK; Potemski M
    Phys Rev Lett; 2009 Apr; 102(16):166401. PubMed ID: 19518730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many-Particle Effects in the Cyclotron Resonance of Encapsulated Monolayer Graphene.
    Russell BJ; Zhou B; Taniguchi T; Watanabe K; Henriksen EA
    Phys Rev Lett; 2018 Jan; 120(4):047401. PubMed ID: 29437433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.
    Assili M; Haddad S
    J Phys Condens Matter; 2013 Sep; 25(36):365503. PubMed ID: 23941870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How close can one approach the Dirac point in graphene experimentally?
    Mayorov AS; Elias DC; Mukhin IS; Morozov SV; Ponomarenko LA; Novoselov KS; Geim AK; Gorbachev RV
    Nano Lett; 2012 Sep; 12(9):4629-34. PubMed ID: 22935053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory.
    Li Z; Wang J; Liu Z
    J Chem Phys; 2014 Oct; 141(14):144107. PubMed ID: 25318715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.