These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19437718)

  • 1. Fabrication of copper oxide dumbbell-like architectures via the hydrophobic interaction of adsorbed hydrocarbon chains.
    Wang H; Shen Q; Li X; Liu F
    Langmuir; 2009 Mar; 25(5):3152-8. PubMed ID: 19437718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ AFM studies on self-assembled monolayers of adsorbed surfactant molecules on well-defined H-terminated Si(111) surfaces in aqueous solutions.
    Imanishi A; Suzuki M; Nakato Y
    Langmuir; 2007 Dec; 23(26):12966-72. PubMed ID: 18020464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptive synthesis of Mg(OH)2 hollow nanospheres and the non-equilibrium shell fusion assisted by catanionic vesicles.
    Liu F; Shen Q; Su Y; Han S; Xu G; Wang D
    J Phys Chem B; 2009 Aug; 113(33):11362-6. PubMed ID: 19630412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.
    Huang CC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    Chemistry; 2006 May; 12(14):3805-10. PubMed ID: 16528773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.
    Aruoja V; Dubourguier HC; Kasemets K; Kahru A
    Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study.
    Heinlaan M; Kahru A; Kasemets K; Arbeille B; Prensier G; Dubourguier HC
    Water Res; 2011 Jan; 45(1):179-90. PubMed ID: 20828783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture.
    Zhong Z; Ng V; Luo J; Teh SP; Teo J; Gedanken A
    Langmuir; 2007 May; 23(11):5971-7. PubMed ID: 17469856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of copper hydroxyphosphate with complex architectures.
    Xu J; Xue D
    J Phys Chem B; 2006 Apr; 110(15):7750-6. PubMed ID: 16610870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterometallic architectures based on the combination of heteroleptic copper and cobalt complexes with silver salts.
    Kilduff B; Pogozhev D; Baudron SA; Hosseini MW
    Inorg Chem; 2010 Dec; 49(23):11231-9. PubMed ID: 21067237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles.
    Martinson CA; Reddy KJ
    J Colloid Interface Sci; 2009 Aug; 336(2):406-11. PubMed ID: 19477461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size control of styrene oxide-ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study.
    Castro E; Taboada P; Barbosa S; Mosquera V
    Biomacromolecules; 2005; 6(3):1438-47. PubMed ID: 15877363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-controllable amphiphilic [2]rotaxanes.
    Tseng HR; Vignon SA; Celestre PC; Perkins J; Jeppesen JO; Di Fabio A; Ballardini R; Gandolfi MT; Venturi M; Balzani V; Stoddart JF
    Chemistry; 2004 Jan; 10(1):155-72. PubMed ID: 14695561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and transport of copper oxide nanoparticles in porous media.
    Jeong SW; Kim SD
    J Environ Monit; 2009 Sep; 11(9):1595-600. PubMed ID: 19724827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of surfactant aggregation and adsorption on soft hydrophobic particles.
    Arnold C; Ulrich S; Stoll S; Marie P; Holl Y
    J Colloid Interface Sci; 2011 Jan; 353(1):188-95. PubMed ID: 20888571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses, crystal structures, and physical properties of dinuclear copper(I) and tetranuclear mixed-valence copper(I,II) complexes with hydroxylated bipyridyl-like ligands.
    Zhang XM; Tong ML; Gong ML; Lee HK; Luo L; Li KF; Tong YX; Chen XM
    Chemistry; 2002 Jul; 8(14):3187-94. PubMed ID: 12203348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubane variations: syntheses, structures, and magnetic property analyses of lanthanide(III)-copper(II) architectures with controlled nuclearities.
    Aronica C; Chastanet G; Pilet G; Le Guennic B; Robert V; Wernsdorfer W; Luneau D
    Inorg Chem; 2007 Jul; 46(15):6108-19. PubMed ID: 17602474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.