These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19437996)
21. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites. Vasileiou AA; Kontopoulou M; Gui H; Docoslis A ACS Appl Mater Interfaces; 2015 Jan; 7(3):1624-31. PubMed ID: 25548884 [TBL] [Abstract][Full Text] [Related]
22. Electrical percolation networks of carbon nanotubes in a shear flow. Kwon G; Heo Y; Shin K; Sung BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011143. PubMed ID: 22400548 [TBL] [Abstract][Full Text] [Related]
23. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers. Allen R; Pan L; Fuller GG; Bao Z ACS Appl Mater Interfaces; 2014 Jul; 6(13):9966-74. PubMed ID: 24914703 [TBL] [Abstract][Full Text] [Related]
24. Effect of Filler Alignment on Piezo-Resistive and Mechanical Properties of Carbon Nanotube Composites. Kim H; Hong SK; Ryu JK; Park SH Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32517341 [TBL] [Abstract][Full Text] [Related]
25. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties. Hossain MM; Islam MA; Shima H; Hasan M; Lee M ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367 [TBL] [Abstract][Full Text] [Related]
26. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042 [TBL] [Abstract][Full Text] [Related]
27. Functionalization effects on the electrical properties of multi-walled carbon nanotube-polyacrylamide composites. Awasthi S; Awasthi K; Kumar R; Srivastava ON J Nanosci Nanotechnol; 2009 Sep; 9(9):5455-60. PubMed ID: 19928243 [TBL] [Abstract][Full Text] [Related]
28. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711 [TBL] [Abstract][Full Text] [Related]
30. Relationship between Viscosity, Microstructure and Electrical Conductivity in Copolyamide Hot Melt Adhesives Containing Carbon Nanotubes. Latko-Durałek P; Kozera R; Macutkevič J; Dydek K; Boczkowska A Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050247 [TBL] [Abstract][Full Text] [Related]
31. Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. Haggenmuller R; Zhou W; Fischer JE; Winey KI J Nanosci Nanotechnol; 2003; 3(1-2):105-10. PubMed ID: 12908237 [TBL] [Abstract][Full Text] [Related]
32. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring. Soto M; Esteva M; Martínez-Romero O; Baez J; Elías-Zúñiga A Materials (Basel); 2015 Sep; 8(10):6697-6718. PubMed ID: 28793594 [TBL] [Abstract][Full Text] [Related]
33. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. Yuan C; Duan B; Li L; Xie B; Huang M; Luo X ACS Appl Mater Interfaces; 2015 Jun; 7(23):13000-6. PubMed ID: 25996341 [TBL] [Abstract][Full Text] [Related]
34. Temperature effects on resistance of aligned multiwalled carbon nanotube films. Koratkar N; Modi A; Lass E; Ajayan P J Nanosci Nanotechnol; 2004 Sep; 4(7):744-8. PubMed ID: 15570956 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of Thermal Conductivity Enhanced Polymer Composites by Constructing an Oriented Three-Dimensional Staggered Interconnected Network of Boron Nitride Platelets and Carbon Nanotubes. Su Z; Wang H; He J; Guo Y; Qu Q; Tian X ACS Appl Mater Interfaces; 2018 Oct; 10(42):36342-36351. PubMed ID: 30264559 [TBL] [Abstract][Full Text] [Related]
37. Micro orientation and anisotropy of conductivity in liquid crystalline polymer films filled with carbon nanotubes. Bliznyuk VN; Singamaneni S; Sanford RL; Chiappetta D; Crooker B; Shibaev PV J Nanosci Nanotechnol; 2005 Oct; 5(10):1651-5. PubMed ID: 16245522 [TBL] [Abstract][Full Text] [Related]
38. Unified equivalent circuit model for carbon nanotube-based nanocomposites. Zhao C; Yuan W; Zhao Y; Hu N; Gu B; Liu H; Alamusi Nanotechnology; 2018 Jul; 29(30):305503. PubMed ID: 29741497 [TBL] [Abstract][Full Text] [Related]
39. Numerical and experimental study of radiation induced conductivity change of carbon nanotube filled polymers. Liu F; Sun Y; Sun W; Sun Z; Yeow JTW Nanotechnology; 2017 Jun; 28(25):255501. PubMed ID: 28452336 [TBL] [Abstract][Full Text] [Related]
40. Parameters Affecting Interfacial Assembly and Alignment of Nanotubes. Jinkins KR; Dwyer JH; Suresh A; Foradori SM; Gopalan P; Arnold MS Langmuir; 2023 Oct; 39(40):14433-14440. PubMed ID: 37756498 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]