These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. Wang H; Yi SI; Pu X; Yu C ACS Appl Mater Interfaces; 2015 May; 7(18):9589-97. PubMed ID: 25894982 [TBL] [Abstract][Full Text] [Related]
46. Conductivity Prediction Method of Carbon Nanotube Resin Composites Considering the Quantum Tunnelling Effect. Wang Y; Yang Y; Ouyang H; Zhao X Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079364 [TBL] [Abstract][Full Text] [Related]
47. Effective reinforcement in carbon nanotube-polymer composites. Wang W; Ciselli P; Kuznetsov E; Peijs T; Barber AH Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1613-26. PubMed ID: 18192168 [TBL] [Abstract][Full Text] [Related]
48. Investigation on Temperature-Dependent Electrical Conductivity of Carbon Nanotube/Epoxy Composites for Sustainable Energy Applications. Njuguna MK; Galpaya D; Yan C; Colwell JM; Will G; Hu N; Yarlagadda P; Bell JM J Nanosci Nanotechnol; 2015 Sep; 15(9):6957-64. PubMed ID: 26716268 [TBL] [Abstract][Full Text] [Related]
50. Carbon nanotube-based functional materials for optical limiting. Chen Y; Lin Y; Liu Y; Doyle J; He N; Zhuang X; Bai J; Blau WJ J Nanosci Nanotechnol; 2007; 7(4-5):1268-83. PubMed ID: 17450890 [TBL] [Abstract][Full Text] [Related]
51. The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube-polymer composites. Xu S; Rezvanian O; Peters K; Zikry MA Nanotechnology; 2013 Apr; 24(15):155706. PubMed ID: 23519025 [TBL] [Abstract][Full Text] [Related]
52. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073 [TBL] [Abstract][Full Text] [Related]
53. Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Kumar GS; Vishnupriya D; Joshi A; Datar S; Patro TU Phys Chem Chem Phys; 2015 Aug; 17(31):20347-60. PubMed ID: 26194165 [TBL] [Abstract][Full Text] [Related]
54. Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes. Karaeva AR; Urvanov SA; Kazennov NV; Mitberg EB; Mordkovich VZ Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33213020 [TBL] [Abstract][Full Text] [Related]
58. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. Zhang LQ; Yang SG; Li L; Yang B; Huang HD; Yan DX; Zhong GJ; Xu L; Li ZM ACS Appl Mater Interfaces; 2018 Nov; 10(46):40156-40167. PubMed ID: 30383958 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing. Naeem F; Prestayko R; Saem S; Nowicki L; Imit M; Adronov A; Moran-Mirabal JM Nanotechnology; 2015 Oct; 26(39):395301. PubMed ID: 26351867 [TBL] [Abstract][Full Text] [Related]
60. Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites. Song BJ; Ahn JW; Cho KK; Roh JS; Lee DY; Yang YS; Lee JB; Hwang DY; Kim HS J Nanosci Nanotechnol; 2013 Nov; 13(11):7723-7. PubMed ID: 24245322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]