These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 19438)
1. Accumulation of phosphoenolpyruvate in red cells incubated with the phosphate ester in an acidified isotonic sucrose medium. Hamasaki N; Tomoda A; Harasaki H; Minakami S J Biochem; 1977 May; 81(5):1505-9. PubMed ID: 19438 [TBL] [Abstract][Full Text] [Related]
2. Transport of phosphoenolpyruvate through red cell membrane in acidified isotonic sucrose medium. Tomoda A; Hamasaki N; Minakami S Biochem Biophys Res Commun; 1975 Oct; 66(4):1127-30. PubMed ID: 1191282 [No Abstract] [Full Text] [Related]
3. Rejuvenation of aged erythrocytes by incorporating phosphoenolpyruvate into the cells. Hamasaki N; Minakami S; Ideguchi H; Ikehara Y Acta Biol Med Ger; 1981; 40(4-5):691-7. PubMed ID: 7315116 [TBL] [Abstract][Full Text] [Related]
4. The active center of transport for phosphoenolpyruvate and inorganic phosphate in the human erythrocyte membrane. Hamasaki N; Kawano Y; Inoue H Biomed Biochim Acta; 1987; 46(2-3):S51-4. PubMed ID: 3593317 [TBL] [Abstract][Full Text] [Related]
5. Abnormal phosphoenolpyruvate transport in erythrocytes of hereditary spherocytosis. Ideguchi H; Hamasaki N; Ikehara Y Acta Biol Med Ger; 1981; 40(4-5):555-8. PubMed ID: 7315102 [TBL] [Abstract][Full Text] [Related]
6. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. Zeidler RB; Kim HD J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943 [TBL] [Abstract][Full Text] [Related]
7. Transport of phosphoenolpyruvate through the erythrocyte membrane. Hamasaki N; Hardjono IS; Minakami S Biochem J; 1978 Jan; 170(1):39-46. PubMed ID: 629781 [TBL] [Abstract][Full Text] [Related]
8. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane. Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217 [TBL] [Abstract][Full Text] [Related]
9. Uphill and selective transport of phosphoenolpyruvate through red cell membrane. Hamasaki N; Harasaki H; Tomoda A; Minakami S Acta Biol Med Ger; 1977; 36(5-6):913-8. PubMed ID: 23641 [No Abstract] [Full Text] [Related]
10. Cell shrinkage activates Na+/H+ exchange in dog red cells by relieving inhibition of exchange by Na+ in isotonic medium. Dunham PB Blood Cells Mol Dis; 2004; 32(3):389-93. PubMed ID: 15121097 [TBL] [Abstract][Full Text] [Related]
11. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways. Gusev GP; Ivanova TI Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079 [TBL] [Abstract][Full Text] [Related]
12. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria. Agalakova NI; Lapin AV; Gusev GP Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370 [TBL] [Abstract][Full Text] [Related]
13. Iron transport mechanisms in reticulocytes and mature erythrocytes. Hodgson LL; Quail EA; Morgan EH J Cell Physiol; 1995 Feb; 162(2):181-90. PubMed ID: 7822429 [TBL] [Abstract][Full Text] [Related]
14. Regeneration of 2,3-bisphosphoglycerate and ATP of stored erythrocytes by phosphoenolpyruvate; a new preservative for blood storage. Hamasaki N; Hirota C; Ideguchi H; Ikehara Y Prog Clin Biol Res; 1981; 55():577-94. PubMed ID: 7291198 [TBL] [Abstract][Full Text] [Related]
15. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling. Gusev GP; Lapin AV; Agulakova NI Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of 3-phosphoglyceroyl phosphate in phosphoenolpyruvate-enriched human erythrocytes. Inoue H; Moriyasu M; Hamasaki N J Biol Chem; 1987 Jun; 262(16):7635-8. PubMed ID: 3584133 [TBL] [Abstract][Full Text] [Related]
17. Incubation studies on human red cells utilizing glucose or inosine under various conditions. Jablonska E; Bishop C J Lab Clin Med; 1975 Oct; 86(4):605-15. PubMed ID: 240898 [TBL] [Abstract][Full Text] [Related]
18. Transport and metabolism of adenosine in human erythrocytes: effect of transport inhibitors and regulation by phosphate. Plagemann PG J Cell Physiol; 1986 Sep; 128(3):491-500. PubMed ID: 3488996 [TBL] [Abstract][Full Text] [Related]
19. Characterization of morphological response of red cells in a sucrose solution. Rudenko SV Blood Cells Mol Dis; 2009; 42(3):252-61. PubMed ID: 19249232 [TBL] [Abstract][Full Text] [Related]
20. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane. Gusev GP; Agalakova NI; Ivanova TI Gen Physiol Biophys; 2008 Dec; 27(4):284-90. PubMed ID: 19202202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]