BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19438010)

  • 1. Enhancing nucleic acid detection sensitivity of propidium iodide by a three nanometer interaction inside cells and in solutions.
    Gupta R; Mishra P; Mittal A
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2607-15. PubMed ID: 19438010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Förster's resonance energy transfer between Fullerene C60 and Coumarin C440.
    Qaiser D; Khan MS; Singh RD; Khan ZH; Chawla S
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1065-8. PubMed ID: 20869302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging.
    Wagh A; Qian SY; Law B
    Bioconjug Chem; 2012 May; 23(5):981-92. PubMed ID: 22482883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid)-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy.
    Chu Q; Xu H; Gao M; Guan X; Liu H; Deng S; Huo X; Liu K; Tian Y; Ma X
    Int J Nanomedicine; 2016; 11():449-63. PubMed ID: 26869788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems.
    Börjesson K; Preus S; El-Sagheer AH; Brown T; Albinsson B; Wilhelmsson LM
    J Am Chem Soc; 2009 Apr; 131(12):4288-93. PubMed ID: 19317504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLGA-based nanoparticles as cancer drug delivery systems.
    Sadat Tabatabaei Mirakabad F; Nejati-Koshki K; Akbarzadeh A; Yamchi MR; Milani M; Zarghami N; Zeighamian V; Rahimzadeh A; Alimohammadi S; Hanifehpour Y; Joo SW
    Asian Pac J Cancer Prev; 2014; 15(2):517-35. PubMed ID: 24568455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells.
    Deng L; Li L; Yang H; Li L; Zhao F; Wu C; Liu Y
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2947-54. PubMed ID: 24734715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia.
    Klinger-Strobel M; Ernst J; Lautenschläger C; Pletz MW; Fischer D; Makarewicz O
    Int J Nanomedicine; 2016; 11():575-83. PubMed ID: 26917959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers.
    Hu X; Li Y; Liu T; Zhang G; Liu S
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15551-60. PubMed ID: 26114380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Förster resonance energy transfer among a structural isomer of adenine and various Coumarins inside a nanosized reverse micelle.
    Ghatak C; Rao VG; Mandal S; Pramanik R; Sarkar S; Verma PK; Sarkar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():67-73. PubMed ID: 22245885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET Assay for Ligands Targeting the Bacterial A-Site RNA.
    Sinkeldam RW; Tor Y
    Methods Mol Biol; 2019; 1973():251-260. PubMed ID: 31016707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast fluorescence resonance energy transfer in a micelle.
    Sahu K; Ghosh S; Mondal SK; Ghosh BC; Sen P; Roy D; Bhattacharyya K
    J Chem Phys; 2006 Jul; 125(4):44714. PubMed ID: 16942181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(D,L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect.
    Yang H; Li K; Liu Y; Liu Z; Miyoshi H
    J Nanosci Nanotechnol; 2009 Jan; 9(1):282-7. PubMed ID: 19441308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers.
    Wahlroos R; Toivonen J; Tirri M; Hänninen P
    J Fluoresc; 2006 May; 16(3):379-86. PubMed ID: 16791502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.
    Trofymchuk K; Prodi L; Reisch A; Mély Y; Altenhöner K; Mattay J; Klymchenko AS
    J Phys Chem Lett; 2015 Jun; 6(12):2259-64. PubMed ID: 26266601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.