BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19438016)

  • 1. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field.
    Chen CB; Chen JY; Lee WC
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2651-9. PubMed ID: 19438016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of PEI-coated magnetic iron oxide nanoparticles as gene vectors.
    Wei W; Xu C; Wu H
    J Huazhong Univ Sci Technolog Med Sci; 2004; 24(6):618-20. PubMed ID: 15791859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field.
    Kamau SW; Hassa PO; Steitz B; Petri-Fink A; Hofmann H; Hofmann-Amtenbrink M; von Rechenberg B; Hottiger MO
    Nucleic Acids Res; 2006; 34(5):e40. PubMed ID: 16540591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules.
    Oral O; Cıkım T; Zuvin M; Unal O; Yagci-Acar H; Gozuacik D; Koşar A
    Ann Biomed Eng; 2015 Nov; 43(11):2816-26. PubMed ID: 25963582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier.
    Kim YK; Zhang M; Lu JJ; Xu F; Chen BA; Xing L; Jiang HL
    J Drug Target; 2016; 24(5):457-67. PubMed ID: 26390926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies.
    Petri-Fink A; Steitz B; Finka A; Salaklang J; Hofmann H
    Eur J Pharm Biopharm; 2008 Jan; 68(1):129-37. PubMed ID: 17881203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles.
    Zhang H; Lee MY; Hogg MG; Dordick JS; Sharfstein ST
    ACS Nano; 2010 Aug; 4(8):4733-43. PubMed ID: 20731451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery.
    Nawwab Al-Deen FM; Selomulya C; Kong YY; Xiang SD; Ma C; Coppel RL; Plebanski M
    Gene Ther; 2014 Feb; 21(2):212-8. PubMed ID: 24352195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer.
    Huth S; Lausier J; Gersting SW; Rudolph C; Plank C; Welsch U; Rosenecker J
    J Gene Med; 2004 Aug; 6(8):923-36. PubMed ID: 15293351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery.
    Arsianti M; Lim M; Marquis CP; Amal R
    Langmuir; 2010 May; 26(10):7314-26. PubMed ID: 20112951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethyleneimine-coated Iron Oxide Nanoparticles as a Vehicle for the Delivery of Small Interfering RNA to Macrophages In Vitro and In Vivo.
    Jia N; Wu H; Duan J; Wei C; Wang K; Zhang Y; Mao X
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI-visible liposome-polyethylenimine complexes for DNA delivery: preparation and evaluation.
    Song X; Yan G; Quan S; Jin E; Quan J; Jin G
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):622-632. PubMed ID: 30585119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimine based magnetic iron-oxide vector: the effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability.
    Arsianti M; Lim M; Marquis CP; Amal R
    Biomacromolecules; 2010 Sep; 11(9):2521-31. PubMed ID: 20712360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.
    Al-Deen FN; Ho J; Selomulya C; Ma C; Coppel R
    Langmuir; 2011 Apr; 27(7):3703-12. PubMed ID: 21361304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC).
    Farrell LL; Pepin J; Kucharski C; Lin X; Xu Z; Uludag H
    Eur J Pharm Biopharm; 2007 Mar; 65(3):388-97. PubMed ID: 17240127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid polyethylenimine and polyacrylic acid-bound iron oxide as a magnetoplex for gene delivery.
    Sun SL; Lo YL; Chen HY; Wang LF
    Langmuir; 2012 Feb; 28(7):3542-52. PubMed ID: 22242960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer.
    Luo X; Peng X; Hou J; Wu S; Shen J; Wang L
    Int J Nanomedicine; 2017; 12():5331-5343. PubMed ID: 28794626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.
    Majewski AP; Schallon A; Jérôme V; Freitag R; Müller AH; Schmalz H
    Biomacromolecules; 2012 Mar; 13(3):857-66. PubMed ID: 22296556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells.
    Mulens-Arias V; Rojas JM; Pérez-Yagüe S; Morales Mdel P; Barber DF
    J Control Release; 2015 Oct; 216():78-92. PubMed ID: 26264831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency].
    Xiang JJ; Nie XM; Tang JQ; Wang YJ; Li Z; Gan K; Huang H; Xiong W; Li XL; Li GY
    Zhonghua Zhong Liu Za Zhi; 2004 Feb; 26(2):71-4. PubMed ID: 15059320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.