These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19438054)

  • 1. UV/TiO2 and UV/TiO2/chemical oxidant processes for the removal of humic acid, Cr and Cu in aqueous TiO2 suspensions.
    Jung JT; Choi JY; Chung J; Lee YW; Kim JO
    Environ Technol; 2009 Mar; 30(3):225-32. PubMed ID: 19438054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2.
    Hu Q; Zhang C; Wang Z; Chen Y; Mao K; Zhang X; Xiong Y; Zhu M
    J Hazard Mater; 2008 Jun; 154(1-3):795-803. PubMed ID: 18082954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of different types of organic compounds on the photocatalytic reduction of Cr(VI).
    Yang JK; Lee SM; Siboni MS
    Environ Technol; 2012 Sep; 33(16-18):2027-32. PubMed ID: 23240196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification.
    Yuan R; Zhou B; Hua D; Shi C
    J Hazard Mater; 2013 Nov; 262():527-38. PubMed ID: 24095992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination.
    Kyung H; Lee J; Choi W
    Environ Sci Technol; 2005 Apr; 39(7):2376-82. PubMed ID: 15871279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.
    Wang P; Qi N; Ao Y; Hou J; Wang C; Qian J
    Environ Pollut; 2016 May; 212():178-187. PubMed ID: 26845365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cupric ions in the H2O2/UV oxidation of humic acids.
    Liao CH; Lu MC; Su SH
    Chemosphere; 2001 Aug; 44(5):913-9. PubMed ID: 11513423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Sci Total Environ; 2016 Oct; 566-567():76-85. PubMed ID: 27213673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study.
    Siboni MS; Samadi MT; Yang JK; Lee SM
    Environ Technol; 2011 Oct; 32(13-14):1573-9. PubMed ID: 22329148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Removal of trace nitrobenzene in water by VUV/TiO2/O3].
    Yin JJ; Zhang PY
    Huan Jing Ke Xue; 2009 Jan; 30(1):134-9. PubMed ID: 19353870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.
    Pandey AK; Pandey SD; Misra V
    Ecotoxicol Environ Saf; 2002 Jun; 52(2):92-6. PubMed ID: 12061824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of photoelectrocatalytic degradation of humic acid using B2O3.TiO2/Ti photoelectrode.
    Yan-li J; Hui-ling L; Chun-mei L
    J Environ Sci (China); 2005; 17(2):208-11. PubMed ID: 16295890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO(2)-assisted photocatalytic degradation of humic acids: effect of copper ions.
    Uyguner CS; Bekbolet M
    Water Sci Technol; 2010; 61(10):2581-90. PubMed ID: 20453331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.
    Zheng S; Jiang W; Rashid M; Cai Y; Dionysiou DD; O'Shea KE
    Molecules; 2015 Feb; 20(2):2622-35. PubMed ID: 25654531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recovery of copper and degradation of 2,4-dichlorophenoxyacetic acid in aqueous systems by a combination of electrolytic and photolytic processes.
    Chaudhary AJ; Grimes SM; Mukhtar-ul-Hassan
    Chemosphere; 2001 Aug; 44(5):1223-30. PubMed ID: 11513411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.