BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19438182)

  • 1. Glycolipid biotinylation on purple membrane with maintained bioactivity.
    Xiang Y; Yang M; Su T; Chen Y; Bi L; Hu K
    J Phys Chem B; 2009 Jun; 113(22):7762-6. PubMed ID: 19438182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric distribution of biotin labeling on the purple membrane.
    Su T; Zhong S; Zhang Y; Hu KS
    J Photochem Photobiol B; 2008 Aug; 92(2):123-7. PubMed ID: 18619849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different interactions between the two sides of purple membrane with atomic force microscope tip.
    Zhong S; Li H; Chen XY; Cao EH; Jin G; Hu KS
    Langmuir; 2007 Apr; 23(8):4486-93. PubMed ID: 17358085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.
    Li R; Cui X; Hu W; Lu Z; Li CM
    J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy.
    Schranz M; Baumann RP; Rhinow D; Hampp N
    J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of purple membranes on polyelectrolyte films.
    Saab MB; Estephan E; Cloitre T; Legros R; Cuisinier FJ; Zimányi L; Gergely C
    Langmuir; 2009 May; 25(9):5159-67. PubMed ID: 19397356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced enhancement of the opto-electronic response of Halobacterium purple membrane monolayer.
    Jin Y; Friedman N; Cahen D; Sheves M
    Chem Commun (Camb); 2006 Mar; (12):1310-2. PubMed ID: 16538257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T
    J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.
    Möller C; Büldt G; Dencher NA; Engel A; Müller DJ
    J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent bending in and out of purple membranes comprising BR-D85T.
    Baumann RP; Eussner J; Hampp N
    Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium.
    Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW
    Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system.
    Shiu PJ; Ju YH; Chen HM; Lee CK
    Protein Expr Purif; 2013 Jun; 89(2):219-24. PubMed ID: 23583309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale distinction of membrane patches--a TERS study of Halobacterium salinarum.
    Deckert-Gaudig T; Böhme R; Freier E; Sebesta A; Merkendorf T; Popp J; Gerwert K; Deckert V
    J Biophotonics; 2012 Jul; 5(7):582-91. PubMed ID: 22371320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N
    J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports.
    Chen HM; Lin CJ; Jheng KR; Kosasih A; Chang JY
    Colloids Surf B Biointerfaces; 2014 Apr; 116():482-8. PubMed ID: 24561502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of Fe3+ ions to halobacterial purple membranes as studied by Mössbauer spectroscopy.
    Maximychev AV; Kostyuchenko IG; Chibirova FKh; Zhilinskaya EA; Chekulaeva LN; Timashev SF
    Membr Cell Biol; 1997; 10(5):487-501. PubMed ID: 9225253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
    Rhinow D; Hampp N
    J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the surface charge density and temperature dependence of purple membrane by electric force microscopy.
    Du H; Li D; Wang Y; Wang C; Zhang D; Yang YL; Wang C
    J Phys Chem B; 2013 Aug; 117(34):9895-9. PubMed ID: 23909786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.