BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19438245)

  • 1. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors.
    Vuojola J; Lamminmäki U; Soukka T
    Anal Chem; 2009 Jun; 81(12):5033-8. PubMed ID: 19438245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance and temperature dependency in nonoverlapping and conventional Förster resonance energy-transfer.
    Vuojola J; Hyppänen I; Nummela M; Kankare J; Soukka T
    J Phys Chem B; 2011 Nov; 115(46):13685-94. PubMed ID: 22007728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol.
    Härmä H; Soukka T; Shavel A; Gaponik N; Weller H
    Anal Chim Acta; 2007 Dec; 604(2):177-83. PubMed ID: 17996540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTR-FRET: Efficient background reduction technology in time-resolved förster resonance energy transfer assays.
    Syrjänpää M; Vuorinen E; Kulmala S; Wang Q; Härmä H; Kopra K
    Anal Chim Acta; 2019 Dec; 1092():93-101. PubMed ID: 31708038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.
    Ivanusic D; Denner J; Bannert N
    Curr Protoc Protein Sci; 2016 Aug; 85():29.17.1-29.17.13. PubMed ID: 27479505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically encoded protease substrate based on lanthanide-binding peptide for time-gated fluorescence detection.
    Vuojola J; Syrjänpää M; Lamminmäki U; Soukka T
    Anal Chem; 2013 Feb; 85(3):1367-73. PubMed ID: 23272697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terbium(III) chelate as an efficient donor for multiple-wavelength fluorescent acceptors.
    Kokko T; Kokko L; Soukka T
    J Fluoresc; 2009 Jan; 19(1):159-64. PubMed ID: 18642064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.
    Nchimi-Nono K; Wegner KD; Lindén S; Lecointre A; Ehret-Sabatier L; Shakir S; Hildebrandt N; Charbonnière LJ
    Org Biomol Chem; 2013 Oct; 11(38):6493-501. PubMed ID: 23851931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer.
    Shimozono S; Hosoi H; Mizuno H; Fukano T; Tahara T; Miyawaki A
    Biochemistry; 2006 May; 45(20):6267-71. PubMed ID: 16700538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins.
    Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR
    Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable cyan fluorescent protein as a FRET donor.
    Souslova EA; Chudakov DM
    Microsc Res Tech; 2006 Mar; 69(3):207-9. PubMed ID: 16538627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the performance of time-gated live-cell microscopy with lanthanide probes.
    Rajendran M; Miller LW
    Biophys J; 2015 Jul; 109(2):240-8. PubMed ID: 26200860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.