These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19438245)

  • 81. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments.
    Valentin G; Verheggen C; Piolot T; Neel H; Coppey-Moisan M; Bertrand E
    Nat Methods; 2005 Nov; 2(11):801. PubMed ID: 16278647
    [No Abstract]   [Full Text] [Related]  

  • 82. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Förster resonance energy transfer (FRET) microscopy for monitoring biomolecular interactions.
    Mattheyses AL; Marcus AI
    Methods Mol Biol; 2015; 1278():329-39. PubMed ID: 25859959
    [TBL] [Abstract][Full Text] [Related]  

  • 84. DsRed as a potential FRET partner with CFP and GFP.
    Erickson MG; Moon DL; Yue DT
    Biophys J; 2003 Jul; 85(1):599-611. PubMed ID: 12829514
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Anomalous surplus energy transfer observed with multiple FRET acceptors.
    Koushik SV; Blank PS; Vogel SS
    PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Optical methods in the study of protein-protein interactions.
    Masi A; Cicchi R; Carloni A; Pavone FS; Arcangeli A
    Adv Exp Med Biol; 2010; 674():33-42. PubMed ID: 20549938
    [TBL] [Abstract][Full Text] [Related]  

  • 87. FRET Imaging of Rho GTPase Activity with Red Fluorescent Protein-Based FRET Pairs.
    Bajar BT; Guan X; Lam A; Lin MZ; Yasuda R; Laviv T; Chu J
    Methods Mol Biol; 2022; 2438():31-43. PubMed ID: 35147933
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies.
    Currie M; Leopold H; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2017 Jun; 121(23):5688-5698. PubMed ID: 28520430
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein.
    Gohil K; Wu SY; Takahashi-Yamashiro K; Shen Y; Campbell RE
    ACS Sens; 2023 Feb; 8(2):587-597. PubMed ID: 36693235
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments.
    Martin KJ; McGhee EJ; Schwarz JP; Drysdale M; Brachmann SM; Stucke V; Sansom OJ; Anderson KI
    PLoS One; 2018; 13(1):e0183585. PubMed ID: 29293509
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Improving FRET dynamic range with bright green and red fluorescent proteins.
    Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ
    Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer.
    Pisterzi LF; Jansma DB; Georgiou J; Woodside MJ; Chou JT; Angers S; Raicu V; Wells JW
    J Biol Chem; 2010 May; 285(22):16723-38. PubMed ID: 20304928
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An improved cyan fluorescent protein variant useful for FRET.
    Rizzo MA; Springer GH; Granada B; Piston DW
    Nat Biotechnol; 2004 Apr; 22(4):445-9. PubMed ID: 14990965
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fast Screening of Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells.
    Durhan ST; Sezer EN; Son CD; Baloglu FK
    Appl Spectrosc; 2023 Mar; 77(3):292-302. PubMed ID: 36345563
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Luminescent trimethoprim-polyaminocarboxylate lanthanide complex conjugates for selective protein labeling and time-resolved bioassays.
    Reddy DR; Pedró Rosa LE; Miller LW
    Bioconjug Chem; 2011 Jul; 22(7):1402-9. PubMed ID: 21619068
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.
    Rajapakse HE; Gahlaut N; Mohandessi S; Yu D; Turner JR; Miller LW
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13582-7. PubMed ID: 20643966
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
    Detert Oude Weme RG; Kovács ÁT; de Jong SJ; Veening JW; Siebring J; Kuipers OP
    PLoS One; 2015; 10(4):e0123239. PubMed ID: 25886351
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Protease-sensitive signalling by chemically engineered intramolecular fluorescent resonance energy transfer mutants of green fluorescent protein.
    Suzuki M; Ito Y; Savage HE; Husimi Y; Douglas KT
    Biochim Biophys Acta; 2004 Sep; 1679(3):222-9. PubMed ID: 15358514
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer from cyan to yellow fluorescent protein validates a novel method to cluster proteins on solid surfaces.
    Madeira C; Estrela N; Ferreira JA; Andrade SM; Costa SM; Melo EP
    J Biomed Opt; 2009; 14(4):044035. PubMed ID: 19725746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.