These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19438765)

  • 1. Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes.
    Camp AL; Konow N; Sanford CP
    J Anat; 2009 May; 214(5):717-28. PubMed ID: 19438765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics.
    Konow N; Sanford CP
    J Exp Biol; 2008 Nov; 211(Pt 21):3378-91. PubMed ID: 18931311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Congruence between muscle activity and kinematics in a convergently derived prey-processing behavior.
    Konow N; Camp AL; Sanford CP
    Integr Comp Biol; 2008 Aug; 48(2):246-60. PubMed ID: 21669788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional morphology of the "tongue-bite" in the osteoglossomorph fish Notopterus.
    Sanford CP; Lauder GV
    J Morphol; 1989 Oct; 202(3):379-408. PubMed ID: 29865685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is a convergently derived muscle-activity pattern driving novel raking behaviours in teleost fishes?
    Konow N; Sanford CP
    J Exp Biol; 2008 Mar; 211(Pt 6):989-99. PubMed ID: 18310124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic analysis of a novel feeding mechanism in the brook trout Salvelinus fontinalis (Teleostei: Salmonidae): behavioral modulation of a functional novelty.
    Sanford CP
    J Exp Biol; 2001 Nov; 204(Pt 22):3905-16. PubMed ID: 11807108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative lever analysis and ontogenetic scaling in esocid fishes: Functional demands and constraints in feeding biomechanics.
    Goulet CL; Smith HJ; Maie T
    J Morphol; 2016 Nov; 277(11):1447-1458. PubMed ID: 27552975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms.
    Anderson PS
    J Morphol; 2010 Aug; 271(8):990-1005. PubMed ID: 20623651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bite force-gape relationship as an avenue of biomechanical adaptation to trophic niche in two salmonid fishes.
    Kaczmarek EB; Gidmark NJ
    J Exp Biol; 2020 Oct; 223(Pt 20):. PubMed ID: 32943579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes.
    Westneat MW
    J Theor Biol; 2003 Aug; 223(3):269-81. PubMed ID: 12850448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae).
    Kammerer CF; Grande L; Westneat MW
    J Morphol; 2006 Sep; 267(9):1017-31. PubMed ID: 15593308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-bar linkage modelling in teleost pharyngeal jaws: computer simulations of bite kinetics.
    Grubich JR; Westneat MW
    J Anat; 2006 Jul; 209(1):79-92. PubMed ID: 16822272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus.
    Carroll AM; Wainwright PC
    J Morphol; 2003 Jun; 256(3):270-84. PubMed ID: 12655610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi).
    Bemis WE; Lauder GV
    J Morphol; 1986 Jan; 187(1):81-108. PubMed ID: 3950967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of skeletal and muscular morphology within the functionally integrated lower jaw adduction system of sculpins and relatives (Cottoidei).
    Roberts AS; Farina SC; Goforth RR; Gidmark NJ
    Zoology (Jena); 2018 Aug; 129():59-65. PubMed ID: 30170749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding kinematics and morphology of the alligator gar (Atractosteus spatula, Lacépède, 1803).
    Lemberg JB; Shubin NH; Westneat MW
    J Morphol; 2019 Oct; 280(10):1548-1570. PubMed ID: 31385619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei.
    Huber DR; Dean MN; Summers AP
    J R Soc Interface; 2008 Aug; 5(25):941-52. PubMed ID: 18238758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator.
    Anderson PS; Westneat MW
    Biol Lett; 2007 Feb; 3(1):76-9. PubMed ID: 17443970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A test of mouth-opening and hyoid-depression mechanisms during prey capture in a catfish using high-speed cineradiography.
    Van Wassenbergh S; Herrel A; Adriaens D; Aerts P
    J Exp Biol; 2005 Dec; 208(Pt 24):4627-39. PubMed ID: 16326944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of bite force in horned lizards: the influence of dietary specialization.
    Meyers JJ; Nishikawa KC; Herrel A
    J Anat; 2018 Feb; 232(2):214-226. PubMed ID: 29159806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.