These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19438814)

  • 1. Encapsulated cargo internalized by fusogenic liposomes partially overlaps the endoplasmic reticulum.
    Mustata RC; Grigorescu A; Petrescu SM
    J Cell Mol Med; 2009 Sep; 13(9B):3110-21. PubMed ID: 19438814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.
    Pelkmans L; Kartenbeck J; Helenius A
    Nat Cell Biol; 2001 May; 3(5):473-83. PubMed ID: 11331875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum.
    Le PU; Nabi IR
    J Cell Sci; 2003 Mar; 116(Pt 6):1059-71. PubMed ID: 12584249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum.
    Tarragó-Trani MT; Storrie B
    Adv Drug Deliv Rev; 2007 Aug; 59(8):782-97. PubMed ID: 17669543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum.
    Norkin LC; Kuksin D
    Virol J; 2005 Apr; 2():38. PubMed ID: 15840166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles.
    Norkin LC; Anderson HA; Wolfrom SA; Oppenheim A
    J Virol; 2002 May; 76(10):5156-66. PubMed ID: 11967331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
    Damm EM; Pelkmans L; Kartenbeck J; Mezzacasa A; Kurzchalia T; Helenius A
    J Cell Biol; 2005 Jan; 168(3):477-88. PubMed ID: 15668298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin.
    Sandvig K; van Deurs B
    FEBS Lett; 2002 Oct; 529(1):49-53. PubMed ID: 12354612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways.
    Massol RH; Larsen JE; Fujinaga Y; Lencer WI; Kirchhausen T
    Mol Biol Cell; 2004 Aug; 15(8):3631-41. PubMed ID: 15146065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum.
    McKenzie J; Johannes L; Taguchi T; Sheff D
    FEBS J; 2009 Mar; 276(6):1581-95. PubMed ID: 19220458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes.
    Un K; Sakai-Kato K; Oshima Y; Kawanishi T; Okuda H
    Biomaterials; 2012 Nov; 33(32):8131-41. PubMed ID: 22858002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis.
    Wang H; Shan X; Ren M; Shang M; Zhou C
    Nucleic Acids Res; 2021 Dec; 49(21):12306-12319. PubMed ID: 34865123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome.
    Barroso M; Sztul ES
    J Cell Biol; 1994 Jan; 124(1-2):83-100. PubMed ID: 7905002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events.
    Pietiäinen V; Marjomäki V; Upla P; Pelkmans L; Helenius A; Hyypiä T
    Mol Biol Cell; 2004 Nov; 15(11):4911-25. PubMed ID: 15356270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1.
    Styers ML; O'Connor AK; Grabski R; Cormet-Boyaka E; Sztul E
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1485-98. PubMed ID: 18385291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation.
    Smart EJ; Ying YS; Conrad PA; Anderson RG
    J Cell Biol; 1994 Dec; 127(5):1185-97. PubMed ID: 7962084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and trafficking of liposomes to the endoplasmic reticulum.
    Pollock S; Antrobus R; Newton L; Kampa B; Rossa J; Latham S; Nichita NB; Dwek RA; Zitzmann N
    FASEB J; 2010 Jun; 24(6):1866-78. PubMed ID: 20097877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyplexes traffic through caveolae to the Golgi and endoplasmic reticulum en route to the nucleus.
    Reilly MJ; Larsen JD; Sullivan MO
    Mol Pharm; 2012 May; 9(5):1280-90. PubMed ID: 22420286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating endocytic pathways to the endoplasmic reticulum and to the cytosol using SNAP-trap.
    Geiger R; Luisoni S; Johnsson K; Greber UF; Helenius A
    Traffic; 2013 Jan; 14(1):36-46. PubMed ID: 23046100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways followed by protein toxins into cells.
    Sandvig K; Spilsberg B; Lauvrak SU; Torgersen ML; Iversen TG; van Deurs B
    Int J Med Microbiol; 2004 Apr; 293(7-8):483-90. PubMed ID: 15149022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.