BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 19439068)

  • 1. Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks.
    Andrabi M; Mizuguchi K; Sarai A; Ahmad S
    BMC Struct Biol; 2009 May; 9():30. PubMed ID: 19439068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of dinucleotide-specific RNA-binding sites in proteins.
    Fernandez M; Kumagai Y; Standley DM; Sarai A; Mizuguchi K; Ahmad S
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S5. PubMed ID: 22373260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins.
    Ahmad S; Singh YH; Paudel Y; Mori T; Sugita Y; Mizuguchi K
    BMC Bioinformatics; 2010 Oct; 11():533. PubMed ID: 20977780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting residue-wise contact orders in proteins by support vector regression.
    Song J; Burrage K
    BMC Bioinformatics; 2006 Oct; 7():425. PubMed ID: 17014735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation.
    Xu R; Zhou J; Wang H; He Y; Wang X; Liu B
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S10. PubMed ID: 25708928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins.
    Hwang S; Gou Z; Kuznetsov IB
    Bioinformatics; 2007 Mar; 23(5):634-6. PubMed ID: 17237068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
    Xue B; Faraggi E; Zhou Y
    Proteins; 2009 Jul; 76(1):176-83. PubMed ID: 19137600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NETASA: neural network based prediction of solvent accessibility.
    Ahmad S; Gromiha MM
    Bioinformatics; 2002 Jun; 18(6):819-24. PubMed ID: 12075017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real value prediction of protein solvent accessibility using enhanced PSSM features.
    Chang DT; Huang HY; Syu YT; Wu CP
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S12. PubMed ID: 19091011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.
    Kuznetsov IB; Gou Z; Li R; Hwang S
    Proteins; 2006 Jul; 64(1):19-27. PubMed ID: 16568445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network.
    Malik A; Ahmad S
    BMC Struct Biol; 2007 Jan; 7():1. PubMed ID: 17201922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.