BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19439312)

  • 1. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative investigations on moving chelation boundary within a continuous EDTA-based sample sweeping system in capillary electrophoresis.
    Fan L; Li C; Zhang W; Cao C; Zhou P; Deng Z
    Electrophoresis; 2008 Oct; 29(19):3989-98. PubMed ID: 18958891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel isotachophoresis of cobalt and copper complexes by metal ion substitution reaction in a continuous moving chelation boundary.
    Zhang W; Chen JF; Fan LY; Cao CX; Ren JC; Li S; Shao J
    Analyst; 2010 Jan; 135(1):140-8. PubMed ID: 20024194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration.
    Cao CX; Fan LY; Zhang W
    Analyst; 2008 Sep; 133(9):1139-57. PubMed ID: 18709186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental investigations on relationship between Kohlrausch regulating function/inequality and moving reaction boundary in electrophoresis.
    Zhang W; Jin J; Fan LY; Li S; Shao J; Cao CX
    J Sep Sci; 2009 Jun; 32(12):2123-31. PubMed ID: 19479762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA.
    Zhang W; Guo CG; Fan LY; Cao CX
    Analyst; 2013 Sep; 138(17):5039-51. PubMed ID: 23806973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.
    Chang J; Zhang J; Wang HY; Fan LY; Fan YP; Li S; Cao CX
    Talanta; 2013 Jan; 103():314-21. PubMed ID: 23200393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis.
    Chen KL; Jiang SJ; Chen YL
    Anal Bioanal Chem; 2017 Mar; 409(9):2461-2469. PubMed ID: 28110351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments.
    Jaros M; Vceláková K; Zusková I; Gas B
    Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections.
    Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX
    Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster.
    Jaros M; Hruska V; Stedrý M; Zusková I; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model and dynamic computer simulation on free flow zone electrophoresis.
    Zhang J; Yan J; Li S; Pang B; Guo CG; Cao CX; Jin XQ
    Analyst; 2013 Oct; 138(19):5734-44. PubMed ID: 23923124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High speed electrophoresis simulation for optimization of continuous flow electrophoresis and high performance capillary techniques: Part I. Computer model.
    Heinrich J; Wagner H
    Electrophoresis; 1992; 13(1-2):44-9. PubMed ID: 1587253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and sweeping of metal ions with EDTA in CZE-ESI-MS.
    Quirino JP; Haddad PR
    J Sep Sci; 2011 Oct; 34(20):2872-8. PubMed ID: 21796786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution computer simulations of EKC.
    Breadmore MC; Quirino JP; Thormann W
    Electrophoresis; 2009 Feb; 30(4):570-8. PubMed ID: 19248146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments on moving interaction boundaries and their characteristics of focusing and probing of both guest and host target molecules.
    Fan L; Yan W; Cao C; Zhang W; Chen Q
    Anal Chim Acta; 2009 Sep; 650(1):111-7. PubMed ID: 19720181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of moving boundaries in electrophoretic systems with multivalent weak electrolytes: principles of non-Kohlrausch concentration adjustment.
    Malá Z; Gebauer P
    Electrophoresis; 2006 Dec; 27(23):4601-9. PubMed ID: 17091467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sweeping capillary electrophoresis: a non-stopped-flow method for measuring bimolecular rate constant of complex formation between protein and DNA.
    Okhonin V; Berezovski M; Krylov SN
    J Am Chem Soc; 2004 Jun; 126(23):7166-7. PubMed ID: 15186140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.