These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 19439384)

  • 21. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must.
    Morata A; Benito S; Loira I; Palomero F; González MC; Suárez-Lepe JA
    Int J Food Microbiol; 2012 Sep; 159(1):47-53. PubMed ID: 22921967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine.
    Romano A; Perello MC; de Revel G; Lonvaud-Funel A
    J Appl Microbiol; 2008 Jun; 104(6):1577-85. PubMed ID: 18194246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments.
    Schwarz M; Picazo-Bacete JJ; Winterhalter P; Hermosín-Gutiérrez I
    J Agric Food Chem; 2005 Oct; 53(21):8372-81. PubMed ID: 16218690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media.
    Harris V; Ford CM; Jiranek V; Grbin PR
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):997-1006. PubMed ID: 18322682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of Dekkera bruxellensis, Candida pararugosa, and Pichia guilliermondii isolated from commercial red wines.
    Jensen SL; Umiker NL; Arneborg N; Edwards CG
    Food Microbiol; 2009 Dec; 26(8):915-21. PubMed ID: 19835781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480.
    González C; Godoy L; Ganga MA
    Antonie Van Leeuwenhoek; 2017 Feb; 110(2):291-296. PubMed ID: 27771809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Volatile phenols are produced by strains of Dekkera bruxellensis under Brazilian fuel ethanol industry-like conditions.
    Silva LFL; Réco AS; Peña R; Ganga MA; Ceccato-Antonini SR
    FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30239698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts.
    Zhou J; Tang C; Zou S; Lei L; Wu Y; Yang W; Harindintwali JD; Zhang J; Zeng W; Deng D; Zhao M; Yu X; Liu X; Qiu S; Arneborg N
    Food Chem; 2024 Apr; 438():137956. PubMed ID: 37989022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches.
    Milheiro J; Filipe-Ribeiro L; Vilela A; Cosme F; Nunes FM
    Crit Rev Food Sci Nutr; 2019; 59(9):1367-1391. PubMed ID: 29257912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions.
    Vigentini I; Romano A; Compagno C; Merico A; Molinari F; Tirelli A; Foschino R; Volonterio G
    FEMS Yeast Res; 2008 Nov; 8(7):1087-96. PubMed ID: 18565109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.
    Curtin CD; Langhans G; Henschke PA; Grbin PR
    Food Microbiol; 2013 Dec; 36(2):241-7. PubMed ID: 24010603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of Brettanomyces spp. in red wines using real-time PCR.
    Tofalo R; Schirone M; Corsetti A; Suzzi G
    J Food Sci; 2012 Sep; 77(9):M545-9. PubMed ID: 22908955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines.
    Schwarz M; Wabnitz TC; Winterhalter P
    J Agric Food Chem; 2003 Jun; 51(12):3682-7. PubMed ID: 12769545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening of representative cider yeasts and bacteria for volatile phenol-production ability.
    Buron N; Coton M; Desmarais C; Ledauphin J; Guichard H; Barillier D; Coton E
    Food Microbiol; 2011 Oct; 28(7):1243-51. PubMed ID: 21839372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties.
    Pozo-Bayón MA; Monagas M; Polo MC; Gómez-Cordovés C
    J Agric Food Chem; 2004 Mar; 52(5):1300-6. PubMed ID: 14995137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources.
    Martorell P; Barata A; Malfeito-Ferreira M; Fernández-Espinar MT; Loureiro V; Querol A
    Int J Food Microbiol; 2006 Jan; 106(1):79-84. PubMed ID: 16229917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and physiological comparison of spoilage wine yeasts.
    Sangorrín MP; García V; Lopes CA; Sáez JS; Martínez C; Ganga MA
    J Appl Microbiol; 2013 Apr; 114(4):1066-74. PubMed ID: 23311591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis.
    Godoy L; Martínez C; Carrasco N; Ganga MA
    Int J Food Microbiol; 2008 Sep; 127(1-2):6-11. PubMed ID: 18571756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine.
    Berbegal C; Spano G; Fragasso M; Grieco F; Russo P; Capozzi V
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):569-576. PubMed ID: 29189899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of
    Morata A; Escott C; Loira I; Del Fresno JM; González C; Suárez-Lepe JA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.