These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 19439480)
1. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. Madu IG; Roth SL; Belouzard S; Whittaker GR J Virol; 2009 Aug; 83(15):7411-21. PubMed ID: 19439480 [TBL] [Abstract][Full Text] [Related]
2. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. Madu IG; Belouzard S; Whittaker GR Virology; 2009 Oct; 393(2):265-71. PubMed ID: 19717178 [TBL] [Abstract][Full Text] [Related]
3. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Belouzard S; Chu VC; Whittaker GR Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5871-6. PubMed ID: 19321428 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. Sainz B; Rausch JM; Gallaher WR; Garry RF; Wimley WC J Virol; 2005 Jun; 79(11):7195-206. PubMed ID: 15890958 [TBL] [Abstract][Full Text] [Related]
5. Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain. Belouzard S; Madu I; Whittaker GR J Biol Chem; 2010 Jul; 285(30):22758-63. PubMed ID: 20507992 [TBL] [Abstract][Full Text] [Related]
6. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design. Aydin H; Al-Khooly D; Lee JE Protein Sci; 2014 May; 23(5):603-17. PubMed ID: 24519901 [TBL] [Abstract][Full Text] [Related]
7. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Follis KE; York J; Nunberg JH Virology; 2006 Jul; 350(2):358-69. PubMed ID: 16519916 [TBL] [Abstract][Full Text] [Related]
8. Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. Ou X; Zheng W; Shan Y; Mu Z; Dominguez SR; Holmes KV; Qian Z J Virol; 2016 Jun; 90(12):5586-5600. PubMed ID: 27030273 [TBL] [Abstract][Full Text] [Related]
9. Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Liu IJ; Kao CL; Hsieh SC; Wey MT; Kan LS; Wang WK Antiviral Res; 2009 Jan; 81(1):82-7. PubMed ID: 18983873 [TBL] [Abstract][Full Text] [Related]
10. Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. Broer R; Boson B; Spaan W; Cosset FL; Corver J J Virol; 2006 Feb; 80(3):1302-10. PubMed ID: 16415007 [TBL] [Abstract][Full Text] [Related]
11. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Petit CM; Melancon JM; Chouljenko VN; Colgrove R; Farzan M; Knipe DM; Kousoulas KG Virology; 2005 Oct; 341(2):215-30. PubMed ID: 16099010 [TBL] [Abstract][Full Text] [Related]
12. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. Guillén J; Kinnunen PK; Villalaín J Biochim Biophys Acta; 2008 Dec; 1778(12):2765-74. PubMed ID: 18721794 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Sainz B; Mossel EC; Gallaher WR; Wimley WC; Peters CJ; Wilson RB; Garry RF Virus Res; 2006 Sep; 120(1-2):146-55. PubMed ID: 16616792 [TBL] [Abstract][Full Text] [Related]
14. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Bosch BJ; Martina BE; Van Der Zee R; Lepault J; Haijema BJ; Versluis C; Heck AJ; De Groot R; Osterhaus AD; Rottier PJ Proc Natl Acad Sci U S A; 2004 Jun; 101(22):8455-60. PubMed ID: 15150417 [TBL] [Abstract][Full Text] [Related]
15. Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. Howard MW; Travanty EA; Jeffers SA; Smith MK; Wennier ST; Thackray LB; Holmes KV J Virol; 2008 Mar; 82(6):2883-94. PubMed ID: 18199653 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state. Hakansson-McReynolds S; Jiang S; Rong L; Caffrey M J Biol Chem; 2006 Apr; 281(17):11965-71. PubMed ID: 16507566 [TBL] [Abstract][Full Text] [Related]
18. Design and biological activities of novel inhibitory peptides for SARS-CoV spike protein and angiotensin-converting enzyme 2 interaction. Ho TY; Wu SL; Chen JC; Wei YC; Cheng SE; Chang YH; Liu HJ; Hsiang CY Antiviral Res; 2006 Feb; 69(2):70-6. PubMed ID: 16337697 [TBL] [Abstract][Full Text] [Related]
19. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Du L; He Y; Zhou Y; Liu S; Zheng BJ; Jiang S Nat Rev Microbiol; 2009 Mar; 7(3):226-36. PubMed ID: 19198616 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Corver J; Broer R; van Kasteren P; Spaan W Virol J; 2009 Dec; 6():230. PubMed ID: 20034394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]