These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19439501)

  • 1. SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms.
    Jung-Hynes B; Ahmad N
    FASEB J; 2009 Sep; 23(9):2803-9. PubMed ID: 19439501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer.
    Jung-Hynes B; Reiter RJ; Ahmad N
    J Pineal Res; 2010 Jan; 48(1):9-19. PubMed ID: 20025641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.
    Maiese K
    Curr Neurovasc Res; 2017; 14(3):299-304. PubMed ID: 28721811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRT1 and NAD as regulators of ageing.
    Rehan L; Laszki-Szcząchor K; Sobieszczańska M; Polak-Jonkisz D
    Life Sci; 2014 Jun; 105(1-2):1-6. PubMed ID: 24657895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Clock-NAD
    Aggarwal S; Trehanpati N; Nagarajan P; Ramakrishna G
    J Cell Physiol; 2022 Aug; 237(8):3164-3180. PubMed ID: 35616339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way.
    Poljsak B
    Rejuvenation Res; 2018 Jun; 21(3):210-224. PubMed ID: 28756747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirtuin-dependent clock control: new advances in metabolism, aging and cancer.
    Masri S
    Curr Opin Clin Nutr Metab Care; 2015 Nov; 18(6):521-7. PubMed ID: 26335311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging.
    Imai S
    Biochim Biophys Acta; 2010 Aug; 1804(8):1584-90. PubMed ID: 19897060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Senescence of Timing Reverted: NAD
    Schibler U
    Mol Cell; 2020 Jun; 78(5):805-807. PubMed ID: 32502419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective.
    Zhou S; Dai YM; Zeng XF; Chen HZ
    Front Endocrinol (Lausanne); 2020; 11():173. PubMed ID: 32308644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells.
    Jung-Hynes B; Huang W; Reiter RJ; Ahmad N
    J Pineal Res; 2010 Aug; 49(1):60-8. PubMed ID: 20524973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling circadian rhythms of metabolism and chromatin remodelling.
    Masri S; Orozco-Solis R; Aguilar-Arnal L; Cervantes M; Sassone-Corsi P
    Diabetes Obes Metab; 2015 Sep; 17 Suppl 1(0 1):17-22. PubMed ID: 26332964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
    Nakahata Y; Kaluzova M; Grimaldi B; Sahar S; Hirayama J; Chen D; Guarente LP; Sassone-Corsi P
    Cell; 2008 Jul; 134(2):329-40. PubMed ID: 18662547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1.
    Soni SK; Basu P; Singaravel M; Sharma R; Pandi-Perumal SR; Cardinali DP; Reiter RJ
    Cell Mol Life Sci; 2021 Mar; 78(6):2503-2515. PubMed ID: 33388853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of sirtuins in cardiac disease.
    Matsushima S; Sadoshima J
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1375-89. PubMed ID: 26232232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The time of metabolism: NAD+, SIRT1, and the circadian clock.
    Bellet MM; Orozco-Solis R; Sahar S; Eckel-Mahan K; Sassone-Corsi P
    Cold Spring Harb Symp Quant Biol; 2011; 76():31-8. PubMed ID: 22179986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of circadian disruption on health; SIRT1 and Telomeres.
    Osum M; Serakinci N
    DNA Repair (Amst); 2020 Dec; 96():102993. PubMed ID: 33038659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sirtuins and the circadian clock: bridging chromatin and metabolism.
    Masri S; Sassone-Corsi P
    Sci Signal; 2014 Sep; 7(342):re6. PubMed ID: 25205852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT1 regulates circadian clock gene expression through PER2 deacetylation.
    Asher G; Gatfield D; Stratmann M; Reinke H; Dibner C; Kreppel F; Mostoslavsky R; Alt FW; Schibler U
    Cell; 2008 Jul; 134(2):317-28. PubMed ID: 18662546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging.
    Wang RH; Zhao T; Cui K; Hu G; Chen Q; Chen W; Wang XW; Soto-Gutierrez A; Zhao K; Deng CX
    Sci Rep; 2016 Jun; 6():28633. PubMed ID: 27346580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.