These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
802 related articles for article (PubMed ID: 19439512)
1. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512 [TBL] [Abstract][Full Text] [Related]
2. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. Sato Y; Hashiguchi Y; Nishida M BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364 [TBL] [Abstract][Full Text] [Related]
3. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates. Singh PP; Isambert H Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943 [TBL] [Abstract][Full Text] [Related]
4. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. Voldoire E; Brunet F; Naville M; Volff JN; Galiana D PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066 [TBL] [Abstract][Full Text] [Related]
5. Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Hufton AL; Mathia S; Braun H; Georgi U; Lehrach H; Vingron M; Poustka AJ; Panopoulou G Genome Res; 2009 Nov; 19(11):2036-51. PubMed ID: 19704032 [TBL] [Abstract][Full Text] [Related]
6. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? Douard V; Brunet F; Boussau B; Ahrens-Fath I; Vlaeminck-Guillem V; Haendler B; Laudet V; Guiguen Y BMC Evol Biol; 2008 Dec; 8():336. PubMed ID: 19094205 [TBL] [Abstract][Full Text] [Related]
7. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus). Venkatachalam AB; Fontenot Q; Farrara A; Wright JM Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():19-25. PubMed ID: 29126085 [TBL] [Abstract][Full Text] [Related]
8. Minor change, major difference: divergent functions of highly conserved cis-regulatory elements subsequent to whole genome duplication events. Goode DK; Callaway HA; Cerda GA; Lewis KE; Elgar G Development; 2011 Mar; 138(5):879-84. PubMed ID: 21247963 [TBL] [Abstract][Full Text] [Related]
9. Rapidly evolving fish genomes and teleost diversity. Ravi V; Venkatesh B Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434 [TBL] [Abstract][Full Text] [Related]
10. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Robertson FM; Gundappa MK; Grammes F; Hvidsten TR; Redmond AK; Lien S; Martin SAM; Holland PWH; Sandve SR; Macqueen DJ Genome Biol; 2017 Jun; 18(1):111. PubMed ID: 28615063 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Parmar MB; Wright JM Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108 [TBL] [Abstract][Full Text] [Related]
12. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. Lagman D; Ocampo Daza D; Widmark J; Abalo XM; Sundström G; Larhammar D BMC Evol Biol; 2013 Nov; 13():238. PubMed ID: 24180662 [TBL] [Abstract][Full Text] [Related]
13. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. Bassham S; Cañestro C; Postlethwait JH BMC Biol; 2008 Aug; 6():35. PubMed ID: 18721460 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and characterization of 14-3-3 genes in fishes. Zhang K; Huang Y; Shi Q Gene; 2021 Jul; 791():145721. PubMed ID: 34010706 [TBL] [Abstract][Full Text] [Related]
15. Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. Chain FJ; Ilieva D; Evans BJ BMC Evol Biol; 2008 Feb; 8():43. PubMed ID: 18261230 [TBL] [Abstract][Full Text] [Related]
16. Whole-genome duplication in teleost fishes and its evolutionary consequences. Glasauer SM; Neuhauss SC Mol Genet Genomics; 2014 Dec; 289(6):1045-60. PubMed ID: 25092473 [TBL] [Abstract][Full Text] [Related]
17. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522 [TBL] [Abstract][Full Text] [Related]
18. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication. Suzuki H; Nikaido M; Hagino-Yamagishi K; Okada N BMC Evol Biol; 2015 Nov; 15():245. PubMed ID: 26555542 [TBL] [Abstract][Full Text] [Related]
19. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Parmar MB; Shams R; Wright JM Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098 [TBL] [Abstract][Full Text] [Related]
20. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]