These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19440525)

  • 21. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Bioslurry remediation of soil contaminated with polycyclic aromatic hydrocarbons].
    Gong Z; Li P; Guo S; Jing X; Wang X; Zhang H
    Huan Jing Ke Xue; 2001 Sep; 22(5):112-6. PubMed ID: 11769215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review.
    Thacharodi A; Hassan S; Singh T; Mandal R; Chinnadurai J; Khan HA; Hussain MA; Brindhadevi K; Pugazhendhi A
    Chemosphere; 2023 Jul; 328():138498. PubMed ID: 36996919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.
    Li X; Li P; Lin X; Zhang C; Li Q; Gong Z
    J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil.
    Li F; Guo S; Wang S; Zhao M
    Chemosphere; 2020 Sep; 254():126880. PubMed ID: 32957287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance.
    Ma XK; Ling Wu L; Fam H
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9817-27. PubMed ID: 25077776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.
    Biache C; Ouali S; Cébron A; Lorgeoux C; Colombano S; Faure P
    J Hazard Mater; 2017 May; 329():1-10. PubMed ID: 28119192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Filamentous fungi from textile effluent and their potential application for bioremediation process.
    Lira MMA; Bernal SPF; Castro CCJ; Ramos PMM; Lira MJS; Ottoni JR; Boroski M; Passarini MRZ
    An Acad Bras Cienc; 2022; 94(2):e20201718. PubMed ID: 35674605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: green and sustainable technology.
    Wang M; Zhang W; He T; Rong L; Yang Q
    Arch Microbiol; 2023 Dec; 206(1):10. PubMed ID: 38059992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal community diversity of heavy metal contaminated soils revealed by metagenomics.
    Passarini MRZ; Ottoni JR; Costa PEDS; Hissa DC; Falcão RM; Melo VMM; Balbino VQ; Mendonça LAR; Lima MGS; Coutinho HDM; Verde LCL
    Arch Microbiol; 2022 Apr; 204(5):255. PubMed ID: 35412096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review.
    Dhar K; Subashchandrabose SR; Venkateswarlu K; Krishnan K; Megharaj M
    Rev Environ Contam Toxicol; 2020; 251():25-108. PubMed ID: 31011832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants.
    Nazari MT; Simon V; Machado BS; Crestani L; Marchezi G; Concolato G; Ferrari V; Colla LM; Piccin JS
    J Environ Manage; 2022 Dec; 323():116220. PubMed ID: 36116255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons by indigenous fungi recovered from crude oil-contaminated soil in Iran.
    Fallahi M; Sarempour M; Mirzadi Gohari A
    Sci Rep; 2023 Dec; 13(1):22153. PubMed ID: 38092846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments.
    Dell'Anno A; Beolchini F; Corinaldesi C; Amato A; Becci A; Rastelli E; Hekeu M; Regoli F; Astarita E; Greco S; Musco L; Danovaro R
    Mar Environ Res; 2020 Dec; 162():105101. PubMed ID: 32846320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review.
    Torres-Farradá G; Thijs S; Rineau F; Guerra G; Vangronsveld J
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations.
    Behera S; Das S
    Microbiol Res; 2023 Aug; 273():127399. PubMed ID: 37150049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.