These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19440743)

  • 1. A multiscale model for red blood cell mechanics.
    Hartmann D
    Biomech Model Mechanobiol; 2010 Feb; 9(1):1-17. PubMed ID: 19440743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiscale approach to the elastic moduli of biomembrane networks.
    Fraternali F; Marcelli G
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1097-108. PubMed ID: 22350843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of micro-level and continuum-level voxel models of the proximal femur.
    Verhulp E; van Rietbergen B; Huiskes R
    J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive modeling of the stress-strain behavior of F-actin filament networks.
    Palmer JS; Boyce MC
    Acta Biomater; 2008 May; 4(3):597-612. PubMed ID: 18325860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ; van de Vosse FN; Janssen JD
    Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The constitutive properties of the brain parenchyma Part 1. Strain energy approach.
    Kohandel M; Sivaloganathan S; Tenti G; Drake JM
    Med Eng Phys; 2006 Jun; 28(5):449-54. PubMed ID: 16257562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of blood flow in the microcirculation.
    Secomb TW
    Symp Soc Exp Biol; 1995; 49():305-21. PubMed ID: 8571232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive material modeling of cell: a micromechanics approach.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    J Biomech Eng; 2007 Jun; 129(3):315-23. PubMed ID: 17536898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.