These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 19440840)

  • 1. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates.
    Sarvepalli DP; Schmidtke DW; Nollert MU
    Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrument and technique for the in vitro screening of platelet activation from whole blood samples.
    Martin Y; Lépine M; Bannari A; Vermette P
    Rev Sci Instrum; 2007 May; 78(5):054302. PubMed ID: 17552844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions.
    Hansson KM; Johansen K; Wetterö J; Klenkar G; Benesch J; Lundström I; Lindahl TL; Tengvall P
    Biosens Bioelectron; 2007 Sep; 23(2):261-8. PubMed ID: 17548188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood.
    Tovar-Lopez FJ; Rosengarten G; Westein E; Khoshmanesh K; Jackson SP; Mitchell A; Nesbitt WS
    Lab Chip; 2010 Feb; 10(3):291-302. PubMed ID: 20091000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood.
    Li M; Ku DN; Forest CR
    Lab Chip; 2012 Apr; 12(7):1355-62. PubMed ID: 22358184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of single-cell adhesion strength using a microfluidic assay.
    Christ KV; Williamson KB; Masters KS; Turner KT
    Biomed Microdevices; 2010 Jun; 12(3):443-55. PubMed ID: 20213215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-mediated platelet adhesion analysis in less than 100 μl of blood: toward a POC platelet diagnostic.
    Kent NJ; O'Brien S; Basabe-Desmonts L; Meade GR; MacCraith BD; Corcoran BG; Kenny D; Ricco AJ
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):826-30. PubMed ID: 21342809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the pulsatility of the blood flow on the extent of platelet adhesion.
    Zhao XM; Wu YP; Cai HX; Wei R; Lisman T; Han JJ; Xia ZL; de Groot PG
    Thromb Res; 2008; 121(6):821-5. PubMed ID: 17884149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential platelet deposition onto collagen in cone-and-plate and parallel plate flow chambers.
    Szarvas M; Oparaugo P; Udvardy ML; Tóth J; Szántó T; Daróczi L; Vereb G; Hársfalvi J
    Platelets; 2006 May; 17(3):185-90. PubMed ID: 16702046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow.
    Colace T; Falls E; Zheng XL; Diamond SL
    Ann Biomed Eng; 2011 Feb; 39(2):922-9. PubMed ID: 20949319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-uniform flow behavior in a parallel plate flow chamber : alters endothelial cell responses.
    McCann JA; Peterson SD; Plesniak MW; Webster TJ; Haberstroh KM
    Ann Biomed Eng; 2005 Mar; 33(3):328-36. PubMed ID: 15868723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the effects of fluid shear forces on cellular responses to profiled surfaces in-vitro: a computational and experimental investigation.
    Brown A; Meenan BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5387-90. PubMed ID: 18003226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabricated grooved substrates as platforms for bioartificial liver reactors.
    Park J; Berthiaume F; Toner M; Yarmush ML; Tilles AW
    Biotechnol Bioeng; 2005 Jun; 90(5):632-44. PubMed ID: 15834948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces.
    Kent NJ; Basabe-Desmonts L; Meade G; MacCraith BD; Corcoran BG; Kenny D; Ricco AJ
    Biomed Microdevices; 2010 Dec; 12(6):987-1000. PubMed ID: 20652753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of upstream shear forces on priming of platelets for downstream adhesion and activation.
    Rahman SM; Eichinger CD; Hlady V
    Acta Biomater; 2018 Jun; 73():228-235. PubMed ID: 29654993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III.
    Houdijk WP; Sakariassen KS; Nievelstein PF; Sixma JJ
    J Clin Invest; 1985 Feb; 75(2):531-40. PubMed ID: 3919060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts.
    Zhan F; Fan Y; Deng X
    Thromb Res; 2010 May; 125(5):413-8. PubMed ID: 19304314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.