These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19441365)

  • 1. Enhanced photodegradation of organic dyes adsorbed on a clay.
    Tani S; Yamaki H; Sumiyoshi A; Suzuki Y; Hasegawa S; Yamazaki S; Kawamata J
    J Nanosci Nanotechnol; 2009 Jan; 9(1):658-61. PubMed ID: 19441365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the arrangements of R6G molecules in organophilic C12TMA/lap clay films for low dye loadings.
    Salleres S; López Arbeloa F; Martínez Martínez V; Arbeloa T; López Arbeloa I
    Langmuir; 2010 Jan; 26(2):930-7. PubMed ID: 20067308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and Interactions of Methyl Green with Montmorillonite and Sepiolite.
    Rytwo G; Nir S; Crespin M; Margulies L
    J Colloid Interface Sci; 2000 Feb; 222(1):12-19. PubMed ID: 10655119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of Rhodamine 6G Adsorbed on Sepiolite Aqueous Suspensions.
    Arbeloa FL; Arbeloa TL; Arbeloa IL
    J Colloid Interface Sci; 1997 Mar; 187(1):105-12. PubMed ID: 9245319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption-Induced Dye Stability of Cationic Dyes on Clay Nanosheets.
    Teepakakorn AP; Bureekaew S; Ogawa M
    Langmuir; 2018 Nov; 34(46):14069-14075. PubMed ID: 30369238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Inspections on Molecular Configurations of Nile Blue A Adsorbed on the Elementary Clay Sheets.
    Huang M; He S; Liu W; Yao Y; Miao S
    J Phys Chem B; 2015 Oct; 119(42):13302-8. PubMed ID: 26436823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysical Properties and Adsorption Behaviors of Novel Tri-Cationic Boron(III) Subporphyrin on Anionic Clay Surface.
    Tsukamoto T; Shimada T; Takagi S
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7522-8. PubMed ID: 26928385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the conditions affecting dye adsorption on titania films and of their effect on dye photodegradation rates.
    Strataki N; Bekiari V; Lianos P
    J Hazard Mater; 2007 Jul; 146(3):514-9. PubMed ID: 17512113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy.
    Martínez Martínez V; López Arbeloa F; Bañuelos Prieto J; López Arbeloa I
    J Phys Chem B; 2005 Apr; 109(15):7443-50. PubMed ID: 16851853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption study of cationic dyes having a trimethylammonium anchor group on hectorite using electrooptic and spectroscopic methods.
    Holzheu S; Hoffmann H
    J Colloid Interface Sci; 2002 Jan; 245(1):16-23. PubMed ID: 16290330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.
    Dvininov E; Popovici E; Pode R; Cocheci L; Barvinschi P; Nica V
    J Hazard Mater; 2009 Aug; 167(1-3):1050-6. PubMed ID: 19250741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of rhodamine 3B adsorbed in Wyoming Montmorillonite aqueous suspensions.
    López Arbeloa F; Chaudhuri R; Arbeloa López T; López Arbeloa I
    J Colloid Interface Sci; 2002 Feb; 246(2):281-7. PubMed ID: 16290412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of Monovalent Organic Cations with Pillared Clays.
    Mishael YG; Rytwo G; Nir S; Crespin M; Annabi-Bergaya F; Van Damme H
    J Colloid Interface Sci; 1999 Jan; 209(1):123-128. PubMed ID: 9878144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the Mechanism and Efficiency of Industrial Dye Adsorption through Facile Structural Control of Organo-montmorillonite Adsorbents.
    Huang P; Kazlauciunas A; Menzel R; Lin L
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26383-26391. PubMed ID: 28719751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures.
    Wei W; Yu C; Zhao Q; Li G; Wan Y
    Chemistry; 2013 Jan; 19(2):566-77. PubMed ID: 23225547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation.
    Yan SC; Li ZS; Zou ZG
    Langmuir; 2010 Mar; 26(6):3894-901. PubMed ID: 20175583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH(2))(terpy)Mn(mu-O)(2)Mn(terpy)(OH(2))](3+) and clay compounds.
    Narita K; Kuwabara T; Sone K; Shimizu K; Yagi M
    J Phys Chem B; 2006 Nov; 110(46):23107-14. PubMed ID: 17107151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye.
    Olivero F; Carniato F; Bisio C; Marchese L
    Chem Asian J; 2014 Jan; 9(1):158-65. PubMed ID: 24124165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lewis Acid-Base Interaction Triggering Electron Delocalization to Enhance the Photodegradation of Extracellular Antibiotic Resistance Genes Adsorbed on Clay Minerals.
    Zhang X; Yao MC; Chen L; Sheng GP
    Environ Sci Technol; 2022 Dec; 56(24):17684-17693. PubMed ID: 36455257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface potential studies on adsorption processes of clay nanosheets onto a floating molecular film of an amphiphilic alkylammonium cation.
    Shimada T; Yamada H; Umemura Y
    J Phys Chem B; 2012 Apr; 116(15):4484-91. PubMed ID: 22439888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.