These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19441495)

  • 1. Atomistic simulation of voids effect on nanoindentation.
    Shan DB; Yuan L; Xu ZH; Guo B
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1234-6. PubMed ID: 19441495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation.
    Li J; Ni Y; Wang H; Mei J
    Nanoscale Res Lett; 2009 Nov; 5(2):420-32. PubMed ID: 20672077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions.
    Nguyen LD; Warner DH
    Phys Rev Lett; 2012 Jan; 108(3):035501. PubMed ID: 22400757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Insights into the Phase Transformation of Single-Crystal Silicon during Nanoindentation.
    Chung YJ; Lee GH; Beom HG
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations.
    Jiang DD; Chen PY; Wang P; He AM
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface step effects on nanoindentation.
    Zimmerman JA; Kelchner CL; Klein PA; Hamilton JC; Foiles SM
    Phys Rev Lett; 2001 Oct; 87(16):165507. PubMed ID: 11690214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dislocation nucleation in shocked fcc solids: effects of temperature and preexisting voids.
    Hatano T
    Phys Rev Lett; 2004 Aug; 93(8):085501. PubMed ID: 15447198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation.
    Li C; Zhang F; Wang X; Rao X
    Appl Opt; 2018 May; 57(14):3661-3668. PubMed ID: 29791331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoindentation response of cortical bone: dependency of subsurface voids.
    Ramezanzadehkoldeh M; Skallerud B
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1599-1612. PubMed ID: 28424904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic simulation on indented defects in silicon.
    Trandinh L; Cheon SS; Kang W
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8224-8. PubMed ID: 24266217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture.
    Hemani H; Warrier M; Sakthivel N; Chaturvedi S
    J Mol Graph Model; 2014 May; 50():134-41. PubMed ID: 24793054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces.
    Navarro V; de la Fuente OR; Mascaraque A; Rojo JM
    Phys Rev Lett; 2008 Mar; 100(10):105504. PubMed ID: 18352204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of indenter-radius size on Au(001) nanoindentation.
    Knap J; Ortiz M
    Phys Rev Lett; 2003 Jun; 90(22):226102. PubMed ID: 12857323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoindentation simulation of dislocation evolution in substrate/film systems.
    Trandinh L; Kang WJ; Cheon SS
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8207-16. PubMed ID: 24266215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter.
    Fu T; Peng X; Chen X; Weng S; Hu N; Li Q; Wang Z
    Sci Rep; 2016 Oct; 6():35665. PubMed ID: 27767046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments.
    Schuh CA; Mason JK; Lund AC
    Nat Mater; 2005 Aug; 4(8):617-21. PubMed ID: 16025122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled atomistic and discrete dislocation plasticity.
    Shilkrot LE; Miller RE; Curtin WA
    Phys Rev Lett; 2002 Jul; 89(2):025501. PubMed ID: 12097000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical X-ray diffraction imaging of voids in dislocation-free high-purity germanium single crystals.
    Gradwohl KP; Danilewsky AN; Roder M; Schmidbauer M; Janicskó-Csáthy J; Gybin A; Abrosimov N; Sumathi RR
    J Appl Crystallogr; 2020 Aug; 53(Pt 4):880-884. PubMed ID: 32788899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.