These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19441537)

  • 1. CuO nanowires grown from Cu film heated under a N2/O2 flow.
    Zhang K; Rossi C; Tenailleau C; Conedera V
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1418-22. PubMed ID: 19441537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper Nitride Nanowire Arrays-Comparison of Synthetic Approaches.
    Scigala A; Szłyk E; Rerek T; Wiśniewski M; Skowronski L; Trzcinski M; Szczesny R
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate.
    Zhang K; Yang Y; Pun EY; Shen R
    Nanotechnology; 2010 Jun; 21(23):235602. PubMed ID: 20463387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).
    Chirizzi D; Guascito MR; Filippo E; Tepore A
    Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct growth of oxide nanowires on CuOx thin film.
    Kim H; Lee BK; An KS; Ju S
    Nanotechnology; 2012 Feb; 23(4):045604. PubMed ID: 22214566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.
    El Mel AA; Buffière M; Bouts N; Gautron E; Tessier PY; Henzler K; Guttmann P; Konstantinidis S; Bittencourt C; Snyders R
    Nanotechnology; 2013 Jul; 24(26):265603. PubMed ID: 23732175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma.
    Qin Y; Staedler T; Jiang X
    Nanotechnology; 2007 Jan; 18(3):035608. PubMed ID: 19636131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection.
    Ibupoto ZH; Khun K; Liu X; Willander M
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3889-98. PubMed ID: 23910292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing.
    Li C; Kurniawan M; Sun D; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jan; 26(1):015503. PubMed ID: 25493443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Photocatalytic Properties of CuO-CuS Core-Shell Nanowires.
    Kao YT; Yang SM; Lu KC
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.
    Guo Z; Seol ML; Kim MS; Ahn JH; Choi YK; Liu JH; Huang XJ
    Nanoscale; 2012 Dec; 4(23):7525-31. PubMed ID: 23099737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode.
    Zhuang Z; Su X; Yuan H; Sun Q; Xiao D; Choi MM
    Analyst; 2008 Jan; 133(1):126-32. PubMed ID: 18087623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing.
    Dong J; Ren L; Zhang Y; Cui X; Hu P; Xu J
    Talanta; 2015 Jan; 132():719-26. PubMed ID: 25476370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic biosensor based on Cu(x)O nanoparticles deposited on polypyrrole nanowires for improving detection range.
    Meng F; Shi W; Sun Y; Zhu X; Wu G; Ruan C; Liu X; Ge D
    Biosens Bioelectron; 2013 Apr; 42():141-7. PubMed ID: 23202344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Organized Al2Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature.
    Marín L; Warot-Fonrose B; Estève A; Chabal YJ; Alfredo Rodriguez L; Rossi C
    ACS Appl Mater Interfaces; 2016 May; 8(20):13104-13. PubMed ID: 27145017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires.
    Shao P; Deng S; Chen J; Xu N
    Nanoscale Res Lett; 2011 Jan; 6(1):86. PubMed ID: 21711605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct and catalyst-free synthesis of ZnO nanowires on brass by thermal oxidation.
    Arafat MM; Rozali S; Haseeb ASMA; Ibrahim S
    Nanotechnology; 2020 Apr; 31(17):175603. PubMed ID: 31918416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synthesis of CuO and Cu nanostructures with promising electrochemical and wettability properties.
    Zhang Q; Xu D; Zhou X; Wu X; Zhang K
    Small; 2014 Mar; 10(5):935-43. PubMed ID: 24174010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.