These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 19441549)
1. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts. Chen RZ; Sun HL; Xing WH; Jin WQ; Xu NP J Nanosci Nanotechnol; 2009 Feb; 9(2):1470-3. PubMed ID: 19441549 [TBL] [Abstract][Full Text] [Related]
2. Mineral-modulated Co catalyst with enhanced adsorption and dissociation of BH Zhang S; Zhong L; Xu Z; Hu J; Tang A; Zuo X Chemosphere; 2022 Mar; 291(Pt 2):132871. PubMed ID: 34774906 [TBL] [Abstract][Full Text] [Related]
3. Activity and stability of the catalytic hydrogel membrane reactor for treating oxidized contaminants. Marks R; Seaman J; Kim J; Doudrick K Water Res; 2020 May; 174():115593. PubMed ID: 32086133 [TBL] [Abstract][Full Text] [Related]
4. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Javaid R; Kawasaki S; Suzuki A; Suzuki TM Beilstein J Org Chem; 2013; 9():1156-63. PubMed ID: 23843908 [TBL] [Abstract][Full Text] [Related]
5. Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Wang A; Yin H; Lu H; Xue J; Ren M; Jiang T Langmuir; 2009 Nov; 25(21):12736-41. PubMed ID: 19736977 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Deactivation and Regeneration of Nickel Microparticles in a Home-Built Microchannel-Coupled Millireactor: Substrate Specificity and Multiphase Flow Dependency. Jaiswal P; Yogeshwar P; Guha Biswas K; Panda D Chemphyschem; 2023 Jul; 24(14):e202300026. PubMed ID: 37163455 [TBL] [Abstract][Full Text] [Related]
7. Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of Galyaltdinov S; Svalova A; Brusko V; Kirsanova M; Dimiev AM Molecules; 2022 Sep; 27(17):. PubMed ID: 36080402 [TBL] [Abstract][Full Text] [Related]
8. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose. Liang G; He L; Arai M; Zhao F ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. Liu J; Yan X; Wang L; Kong L; Jian P J Colloid Interface Sci; 2017 Jul; 497():102-107. PubMed ID: 28268182 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol. Zhou L; Wen M; Wu Q; Wu D Dalton Trans; 2014 Jun; 43(21):7924-9. PubMed ID: 24714959 [TBL] [Abstract][Full Text] [Related]
11. Multi-metal nanomaterials obtained from oil/water interface as effective catalysts in reduction of 4-nitrophenol. Hoseini SJ; Bahrami M; Sadri N; Aramesh N; Fard ZS; Iran HR; Agahi BH; Maddahfar M; Dehghani M; Arabi AZB; Heidari N; Fard SFH; Moradi Z J Colloid Interface Sci; 2018 Mar; 513():602-616. PubMed ID: 29197277 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenation of CO to methane over mesoporous nickel-iron-alumina xerogel nano-catalysts. Hwang S; Lee J; Hong UG; Jung JC; Baik JH; Koh DJ; Lim H; Song IK J Nanosci Nanotechnol; 2012 Jul; 12(7):6051-7. PubMed ID: 22966707 [TBL] [Abstract][Full Text] [Related]
13. Pore control using the nano structured powders on the fabrication of porous membrane and its application. Kim SS; Lee HH; Hong SC J Nanosci Nanotechnol; 2012 Jul; 12(7):5564-70. PubMed ID: 22966611 [TBL] [Abstract][Full Text] [Related]
14. Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5-Hydroxymethylfurfural in Water. Perret N; Grigoropoulos A; Zanella M; Manning TD; Claridge JB; Rosseinsky MJ ChemSusChem; 2016 Mar; 9(5):521-31. PubMed ID: 26870940 [TBL] [Abstract][Full Text] [Related]
15. Construction of core-shell mesoporous carbon nanofiber@nickel cobaltite nanostructures as highly efficient catalysts towards 4-nitrophenol reduction. Yang Y; Zeng D; Shao S; Hao S; Zhu G; Liu B J Colloid Interface Sci; 2019 Mar; 538():377-386. PubMed ID: 30530035 [TBL] [Abstract][Full Text] [Related]
16. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195 [TBL] [Abstract][Full Text] [Related]
17. Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis. Jin Q; Lu B; Pan Y; Tao X; Himmelhaver C; Shen Y; Gu S; Zeng Y; Li X Catal Today; 2020 Dec; 358(1):324-332. PubMed ID: 33424117 [TBL] [Abstract][Full Text] [Related]
18. Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins. Nelkenbaum E; Dror I; Berkowitz B Chemosphere; 2007 Jun; 68(2):210-7. PubMed ID: 17335868 [TBL] [Abstract][Full Text] [Related]
19. Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source. Zhang P; Sheng X; Chen X; Fang Z; Jiang J; Wang M; Li F; Fan L; Ren Y; Zhang B; Timmer BJJ; Ahlquist MSG; Sun L Angew Chem Int Ed Engl; 2019 Jul; 58(27):9155-9159. PubMed ID: 31025774 [TBL] [Abstract][Full Text] [Related]
20. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon. Hong UG; Kim JK; Lee J; Lee JK; Yi J; Song IK J Nanosci Nanotechnol; 2014 Nov; 14(11):8867-72. PubMed ID: 25958619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]