These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19441792)

  • 1. Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages.
    Kang S; Suci PA; Broomell CC; Iwahori K; Kobayashi M; Yamashita I; Young M; Douglas T
    Nano Lett; 2009 Jun; 9(6):2360-6. PubMed ID: 19441792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry.
    Kang S; Oltrogge LM; Broomell CC; Liepold LO; Prevelige PE; Young M; Douglas T
    J Am Chem Soc; 2008 Dec; 130(49):16527-9. PubMed ID: 19554690
    [No Abstract]   [Full Text] [Related]  

  • 3. The ferritin superfamily: Supramolecular templates for materials synthesis.
    Uchida M; Kang S; Reichhardt C; Harlen K; Douglas T
    Biochim Biophys Acta; 2010 Aug; 1800(8):834-45. PubMed ID: 20026386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles.
    Xing H; Wang Z; Xu Z; Wong NY; Xiang Y; Liu GL; Lu Y
    ACS Nano; 2012 Jan; 6(1):802-9. PubMed ID: 22148462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice.
    Rad B; Haxton TK; Shon A; Shin SH; Whitelam S; Ajo-Franklin CM
    ACS Nano; 2015 Jan; 9(1):180-90. PubMed ID: 25494454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Nanoreaction Clusters with Dual-Functionalized Protein Cage Nanobuilding Blocks.
    Choi H; Choi B; Kim GJ; Kim HU; Kim H; Jung HS; Kang S
    Small; 2018 Aug; 14(35):e1801488. PubMed ID: 30066359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Nanoscale Cages from Self-Assembling DNA and Protein Building Blocks.
    Xu Y; Jiang S; Simmons CR; Narayanan RP; Zhang F; Aziz AM; Yan H; Stephanopoulos N
    ACS Nano; 2019 Mar; 13(3):3545-3554. PubMed ID: 30835439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-assisted assembly of nanostructured protein microfibers.
    Kamada A; Mittal N; Söderberg LD; Ingverud T; Ohm W; Roth SV; Lundell F; Lendel C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1232-1237. PubMed ID: 28123065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization.
    Suci PA; Kang S; Young M; Douglas T
    J Am Chem Soc; 2009 Jul; 131(26):9164-5. PubMed ID: 19522495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titania nanostructures fabricated by atomic layer deposition using spherical protein cages.
    Kim H; Pippel E; Gösele U; Knez M
    Langmuir; 2009 Dec; 25(23):13284-9. PubMed ID: 19928935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition.
    Liu J; Mao Y; Lan E; Banatao DR; Forse GJ; Lu J; Blom HO; Yeates TO; Dunn B; Chang JP
    J Am Chem Soc; 2008 Dec; 130(50):16908-13. PubMed ID: 19053479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A helix swapping study of two protein cages.
    Fan R; Boyle AL; Cheong VV; Ng SL; Orner BP
    Biochemistry; 2009 Jun; 48(24):5623-30. PubMed ID: 19405543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Nanocontainers from Nonviral Origin: Testing the Mechanics of Artificial and Natural Protein Cages by AFM.
    Heinze K; Sasaki E; King NP; Baker D; Hilvert D; Wuite GJ; Roos WH
    J Phys Chem B; 2016 Jul; 120(26):5945-52. PubMed ID: 27187612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically tunable reactivity of energetic nanomaterials using protein cages.
    Slocik JM; Crouse CA; Spowart JE; Naik RR
    Nano Lett; 2013 Jun; 13(6):2535-40. PubMed ID: 23713514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA binding adaptors to assemble proteins of interest on DNA scaffold.
    Nakata E; Dinh H; Nguyen TM; Morii T
    Methods Enzymol; 2019; 617():287-322. PubMed ID: 30784406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages.
    Chidchob P; Edwardson TG; Serpell CJ; Sleiman HF
    J Am Chem Soc; 2016 Apr; 138(13):4416-25. PubMed ID: 26998893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions inside nanoscale protein cages.
    Bode SA; Minten IJ; Nolte RJ; Cornelissen JJ
    Nanoscale; 2011 Jun; 3(6):2376-89. PubMed ID: 21461437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry.
    Mitchell N; Schlapak R; Kastner M; Armitage D; Chrzanowski W; Riener J; Hinterdorfer P; Ebner A; Howorka S
    Angew Chem Int Ed Engl; 2009; 48(3):525-7. PubMed ID: 19067449
    [No Abstract]   [Full Text] [Related]  

  • 20. DNA-based routes to semiconducting nanomaterials.
    Houlton A; Pike AR; Angel Galindo M; Horrocks BR
    Chem Commun (Camb); 2009 Apr; (14):1797-806. PubMed ID: 19319411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.