BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19441828)

  • 21. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains.
    Sieber SA; Walsh CT; Marahiel MA
    J Am Chem Soc; 2003 Sep; 125(36):10862-6. PubMed ID: 12952465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific labeling of cell surface proteins with chemically diverse compounds.
    George N; Pick H; Vogel H; Johnsson N; Johnsson K
    J Am Chem Soc; 2004 Jul; 126(29):8896-7. PubMed ID: 15264811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labeling surface proteins with high specificity: Intrinsic limitations of phosphopantetheinyl transferase systems.
    Stüber JC; Plückthun A
    PLoS One; 2019; 14(12):e0226579. PubMed ID: 31856184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutational analysis of peptidyl carrier protein and acyl carrier protein synthase unveils residues involved in protein-protein recognition.
    Finking R; Mofid MR; Marahiel MA
    Biochemistry; 2004 Jul; 43(28):8946-56. PubMed ID: 15248752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene cloning, expression and functional characterization of an acyl carrier protein AcpV from Vibrio anguillarum.
    Liu Q; Ma Y; Zhou L; Zhang Y
    Arch Microbiol; 2006 Mar; 185(2):159-63. PubMed ID: 16429280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase.
    Sunbul M; Marshall NJ; Zou Y; Zhang K; Yin J
    J Mol Biol; 2009 Apr; 387(4):883-98. PubMed ID: 19340948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nonredundant roles of two 4'-phosphopantetheinyl transferases in vital processes of Mycobacteria.
    Chalut C; Botella L; de Sousa-D'Auria C; Houssin C; Guilhot C
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8511-6. PubMed ID: 16709676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-Specific Antibody Labeling Using Phosphopantetheinyl Transferase-Catalyzed Ligation.
    Grünewald J; Brock A; Geierstanger BH
    Methods Mol Biol; 2019; 2012():237-278. PubMed ID: 31161512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of a mitochondrial phosphopantetheinyl transferase (PPTase) gene pptB in Aspergillus fumigatus.
    Allen G; Bromley M; Kaye SJ; Keszenman-Pereyra D; Zucchi TD; Price J; Birch M; Oliver JD; Turner G
    Fungal Genet Biol; 2011 Apr; 48(4):456-64. PubMed ID: 21195204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling.
    Yin J; Lin AJ; Buckett PD; Wessling-Resnick M; Golan DE; Walsh CT
    Chem Biol; 2005 Sep; 12(9):999-1006. PubMed ID: 16183024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Phosphopantetheinyl Transferases.
    Grünewald J; Klock HE; Cellitti SE; Bursulaya B; McMullan D; Jones DH; Chiu HP; Wang X; Patterson P; Zhou H; Vance J; Nigoghossian E; Tong H; Daniel D; Mallet W; Ou W; Uno T; Brock A; Lesley SA; Geierstanger BH
    Bioconjug Chem; 2015 Dec; 26(12):2554-62. PubMed ID: 26588668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure, biochemistry, and inhibition of essential 4'-phosphopantetheinyl transferases from two species of Mycobacteria.
    Vickery CR; Kosa NM; Casavant EP; Duan S; Noel JP; Burkart MD
    ACS Chem Biol; 2014 Sep; 9(9):1939-44. PubMed ID: 24963544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and flexible biochemical assays for evaluating 4'-phosphopantetheinyl transferase activity.
    Owen JG; Copp JN; Ackerley DF
    Biochem J; 2011 Jun; 436(3):709-17. PubMed ID: 21466506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification.
    Meier JL; Mercer AC; Rivera H; Burkart MD
    J Am Chem Soc; 2006 Sep; 128(37):12174-84. PubMed ID: 16967968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A phosphopantetheinyl transferase gene essential for biosynthesis of n-3 polyunsaturated fatty acids from Moritella marina strain MP-1.
    Orikasa Y; Nishida T; Hase A; Watanabe K; Morita N; Okuyama H
    FEBS Lett; 2006 Aug; 580(18):4423-9. PubMed ID: 16859689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase.
    Gross F; Gottschalk D; Müller R
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):66-74. PubMed ID: 15635461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two functionally redundant Sfp-type 4'-phosphopantetheinyl transferases differentially activate biosynthetic pathways in Myxococcus xanthus.
    Meiser P; Müller R
    Chembiochem; 2008 Jul; 9(10):1549-53. PubMed ID: 18506874
    [No Abstract]   [Full Text] [Related]  

  • 39. Chemical probes shed light on protein function.
    O'Hare HM; Johnsson K; Gautier A
    Curr Opin Struct Biol; 2007 Aug; 17(4):488-94. PubMed ID: 17851069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis.
    Dym O; Albeck S; Peleg Y; Schwarz A; Shakked Z; Burstein Y; Zimhony O
    J Mol Biol; 2009 Nov; 393(4):937-50. PubMed ID: 19733180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.