These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19441832)

  • 1. Self-assembly of ligated gold nanoparticles: phenomenological modeling and computer simulations.
    Khan SJ; Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2009 Dec; 25(24):13861-8. PubMed ID: 19441832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and morphology of cluster growth in a model of short-range attractive colloids.
    Khan SJ; Sorensen CM; Chakrabarti A
    J Chem Phys; 2009 Nov; 131(19):194908. PubMed ID: 19929077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling arrested cluster growth in quenched nanoparticle solutions.
    Podariu I; Yan H; Sorensen CM; Chakrabarti A
    J Chem Phys; 2008 Jul; 129(3):034706. PubMed ID: 18647037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of nucleation of nanoparticle superclusters from solution.
    Khan SJ; Sorensen CM; Chakrabarti A
    Langmuir; 2012 Apr; 28(13):5570-9. PubMed ID: 22385301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of DNA-linked nanoparticle aggregates.
    Park SY; Lee JS; Georganopoulou D; Mirkin CA; Schatz GC
    J Phys Chem B; 2006 Jun; 110(25):12673-81. PubMed ID: 16800601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation-fragmentation in a model of DNA-mediated colloidal assembly.
    Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2005 Sep; 21(20):8992-9. PubMed ID: 16171321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On one-dimensional self-assembly of surfactant-coated nanoparticles.
    Wang JC; Neogi P; Forciniti D
    J Chem Phys; 2006 Nov; 125(19):194717. PubMed ID: 17129160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model for reversible nanoparticle assembly in a polymer matrix.
    Rahedi AJ; Douglas JF; Starr FW
    J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubes.
    Sainsbury T; Stolarczyk J; Fitzmaurice D
    J Phys Chem B; 2005 Sep; 109(34):16310-25. PubMed ID: 16853074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains.
    Gómez ML; Hoppe CE; Zucchi IA; Williams RJ; Giannotti MI; López-Quintela MA
    Langmuir; 2009 Jan; 25(2):1210-7. PubMed ID: 19105745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.
    Abbou J; Anne A; Demaille C
    J Phys Chem B; 2006 Nov; 110(45):22664-75. PubMed ID: 17092014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the mechanism of amino acid-based Au nanoparticle chain formation.
    Sethi M; Knecht MR
    Langmuir; 2010 Jun; 26(12):9860-74. PubMed ID: 20392122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of nanoparticles into rings: a lattice-gas model.
    Yosef G; Rabani E
    J Phys Chem B; 2006 Oct; 110(42):20965-72. PubMed ID: 17048914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.