These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19441833)

  • 1. Development of microfluidic chips for heterogeneous receptor-ligand interaction studies.
    Goldberg MD; Lo RC; Abele S; Macka M; Gomez FA
    Anal Chem; 2009 Jun; 81(12):5095-8. PubMed ID: 19441833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip frontal affinity chromatography to study the binding of a ligand to teicoplanin-derivatized microbeads.
    Liu X; Gomez FA
    Electrophoresis; 2009 Apr; 30(7):1194-7. PubMed ID: 19283695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a computational neural network to optimize the fluorescence signal from a receptor-ligand interaction on a microfluidic chip.
    Ortega M; Hanrahan G; Arceo M; Gomez FA
    Electrophoresis; 2015 Feb; 36(3):393-7. PubMed ID: 25100638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a genetically tuned neural platform in optimizing fluorescence from receptor-ligand binding interactions on microchips.
    Alvarado J; Hanrahan G; Nguyen HT; Gomez FA
    Electrophoresis; 2012 Sep; 33(17):2711-7. PubMed ID: 22965716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct fluorescence polarization assay for the detection of glycopeptide antibiotics.
    Yu L; Zhong M; Wei Y
    Anal Chem; 2010 Aug; 82(16):7044-8. PubMed ID: 20704393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple-injection affinity capillary electrophoresis to examine binding constants between glycopeptide antibiotics and peptides.
    Zavaleta J; Chinchilla D; Martinez K; Gomez FA
    J Chromatogr A; 2006 Feb; 1105(1-2):59-65. PubMed ID: 16325833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-column ligand/receptor derivatization coupled to affinity capillary electrophoresis.
    Zavaleta J; Chinchilla D; Gomez A; Silverio C; Azad M; Gomez FA
    Methods Mol Biol; 2008; 384():647-60. PubMed ID: 18392588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic microsphere-based methods to study the interaction of teicoplanin with peptides and bacteria.
    Piyasena ME; Real LJ; Diamond RA; Xu HH; Gomez FA
    Anal Bioanal Chem; 2008 Nov; 392(5):877-86. PubMed ID: 18712518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial-filling affinity capillary electrophoresis techniques to probe the binding of glycopeptide antibiotics to D-Ala-D-Ala terminus peptides.
    Zavaleta J; Chinchilla DB; Kaddis CF; Martinez K; Brown A; Gomez A; Pao A; Ramirez A; Nilapwar S; Ladbury JE; Gomez FA
    J Capill Electrophor Microchip Technol; 2006; 9(5-6):101-17. PubMed ID: 17094294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interactions between glycopeptide vancomycin and bacterial cell wall peptide analogues.
    Xing B; Jiang T; Wu X; Liew R; Zhou J; Zhang D; Yeow EK
    Chemistry; 2011 Dec; 17(50):14170-7. PubMed ID: 22083883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors.
    Ramirez A; Gomez FA
    J Capill Electrophor Microchip Technol; 2007; 10(3-4):43-50. PubMed ID: 18232512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs.
    Nitanai Y; Kikuchi T; Kakoi K; Hanamaki S; Fujisawa I; Aoki K
    J Mol Biol; 2009 Feb; 385(5):1422-32. PubMed ID: 18976660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-column derivatization of the antibiotics teicoplanin and ristocetin coupled to affinity capillary electrophoresis.
    Silverio CF; Azad M; Gomez FA
    Electrophoresis; 2003 Mar; 24(5):808-15. PubMed ID: 12627441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the glycopeptide framework in the antibacterial activity of hydrophobic derivatives of glycopeptide antibiotics.
    Printsevskaya SS; Pavlov AY; Olsufyeva EN; Mirchink EP; Preobrazhenskaya MN
    J Med Chem; 2003 Mar; 46(7):1204-9. PubMed ID: 12646030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal analysis microchip capillary electrophoresis to study the binding of ligands to receptors derivatized on magnetic beads.
    Liu X; Gomez FA
    Anal Bioanal Chem; 2009 Jan; 393(2):615-21. PubMed ID: 19005646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial filling multiple injection affinity capillary electrophoresis (PFMIACE) to estimate binding constants of receptors to ligands.
    Zavaleta J; Chinchilla DB; Ramirez A; Pao A; Martinez K; Nilapwar S; Ladbury JE; Mallik S; Gomez FA
    Talanta; 2007 Jan; 71(1):192-201. PubMed ID: 19071288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus.
    Serina S; Radice F; Maffioli S; Donadio S; Sosio M
    FEMS Microbiol Lett; 2004 Nov; 240(1):69-74. PubMed ID: 15500981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum simulations of the structure and binding of glycopeptide antibiotic aglycons to cell wall analogues.
    Lee JG; Sagui C; Roland C
    J Phys Chem B; 2005 Nov; 109(43):20588-96. PubMed ID: 16853665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity capillary electrophoresis to examine receptor-ligand interactions.
    Azad M; Kaddis J; Villareal V; Hernandez L; Silverio C; Gomez FA
    Methods Mol Biol; 2004; 276():153-68. PubMed ID: 15163857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.